Question
Simplify the expression
−19440x6y2+25920x5y3−8640x4y4
Evaluate
(−3x2y×5(3x−2y)×3)×2×3x2y×2(3x−2y)×4
Multiply the terms
More Steps

Multiply the terms
3x2y×5(3x−2y)×3
Multiply the terms
More Steps

Evaluate
3×5×3
Multiply the terms
15×3
Multiply the numbers
45
45x2y(3x−2y)
(−45x2y(3x−2y))×2×3x2y×2(3x−2y)×4
Remove the parentheses
−45x2y(3x−2y)×2×3x2y×2(3x−2y)×4
Multiply the terms
More Steps

Evaluate
45×2×3×2×4
Multiply the terms
90×3×2×4
Multiply the terms
270×2×4
Multiply the terms
540×4
Multiply the numbers
2160
−2160x2y(3x−2y)x2y(3x−2y)
Multiply the terms with the same base by adding their exponents
−2160x2+2y(3x−2y)y(3x−2y)
Add the numbers
−2160x4y(3x−2y)y(3x−2y)
Multiply the terms
−2160x4y2(3x−2y)(3x−2y)
Multiply the terms
−2160x4y2(3x−2y)2
Expand the expression
More Steps

Evaluate
(3x−2y)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(3x)2−2×3x×2y+(2y)2
Calculate
9x2−12xy+4y2
−2160x4y2(9x2−12xy+4y2)
Apply the distributive property
−2160x4y2×9x2−(−2160x4y2×12xy)−2160x4y2×4y2
Multiply the terms
More Steps

Evaluate
−2160x4y2×9x2
Multiply the numbers
−19440x4y2x2
Multiply the terms
More Steps

Evaluate
x4×x2
Use the product rule an×am=an+m to simplify the expression
x4+2
Add the numbers
x6
−19440x6y2
−19440x6y2−(−2160x4y2×12xy)−2160x4y2×4y2
Multiply the terms
More Steps

Evaluate
−2160x4y2×12xy
Multiply the numbers
−25920x4y2xy
Multiply the terms
More Steps

Evaluate
x4×x
Use the product rule an×am=an+m to simplify the expression
x4+1
Add the numbers
x5
−25920x5y2×y
Multiply the terms
More Steps

Evaluate
y2×y
Use the product rule an×am=an+m to simplify the expression
y2+1
Add the numbers
y3
−25920x5y3
−19440x6y2−(−25920x5y3)−2160x4y2×4y2
Multiply the terms
More Steps

Evaluate
−2160x4y2×4y2
Multiply the numbers
−8640x4y2×y2
Multiply the terms
More Steps

Evaluate
y2×y2
Use the product rule an×am=an+m to simplify the expression
y2+2
Add the numbers
y4
−8640x4y4
−19440x6y2−(−25920x5y3)−8640x4y4
Solution
−19440x6y2+25920x5y3−8640x4y4
Show Solution
