Question
Evaluate the integral
2sec(x)+C,C∈R
Evaluate
∫sec(x)sec(x)tan(x)dx
Reduce the fraction
More Steps

Calculate
sec(x)sec(x)
Use the product rule aman=an−m to simplify the expression
sec1−21(x)
Subtract the terms
sec21(x)
∫sec21(x)tan(x)dx
Rewrite the expression
∫cos−23(x)sin(x)dx
Rewrite the expression
∫cos23(x)sin(x)dx
Use the substitution dx=−sin(x)1dt to transform the integral
More Steps

Evaluate
t=cos(x)
Calculate the derivative
dt=−sin(x)dx
Evaluate
dx=−sin(x)1dt
∫cos23(x)sin(x)×(−sin(x)1)dt
Simplify
More Steps

Evaluate
cos23(x)sin(x)×(−sin(x)1)
Multiplying or dividing an odd number of negative terms equals a negative
−cos23(x)sin(x)×sin(x)1
Cancel out the common factor sin(x)
−cos23(x)1×1
Multiply the terms
−cos23(x)1
∫−cos23(x)1dt
Use the substitution t=cos(x) to transform the integral
∫t23−1dt
Use b−a=−ba=−ba to rewrite the fraction
∫−t231dt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−∫t231dt
Use the property of integral ∫xndx=n+1xn+1
−−23+1t−23+1
Simplify
More Steps

Evaluate
−23+1t−23+1
Add the numbers
More Steps

Evaluate
−23+1
Write all numerators above the least common denominator 2
−23+1×21×2
Calculate
−23+22
Add the terms
2−3+2
Add the terms
2−1
Rewrite the fraction
−21
−23+1t−21
Add the numbers
More Steps

Evaluate
−23+1
Write all numerators above the least common denominator 2
−23+1×21×2
Calculate
−23+22
Add the terms
2−3+2
Add the terms
2−1
Rewrite the fraction
−21
−21t−21
Multiply by the reciprocal
t−21(−2)
Use the commutative property to reorder the terms
−2t−21
−(−2t−21)
Calculate
2t−21
Substitute back
2cos−21(x)
Simplify
2sec21(x)
Use anm=nam to transform the expression
2sec(x)
Solution
2sec(x)+C,C∈R
Show Solution
