Question
Solve the equation
x=5ln(π)2(ln(2))2π2−2π2logπ(2)×ln(2)
Alternative Form
x≈0.20949
Evaluate
(ln(2)−logπ(2)x)×ln(π)π2ln(22)=5
Find the domain
More Steps

Evaluate
(ln(2)−logπ(2)x)×ln(π)=0
Simplify
More Steps

Evaluate
(ln(2)−logπ(2)x)×ln(π)
Remove the unnecessary parentheses
ln(2)−logπ(2)x×ln(π)
Multiply the terms
ln(2)−logπ(2)xln(π)
Use the commutative property to reorder the terms
ln(2)−logπ(2)ln(π)×x
ln(2)−logπ(2)ln(π)×x=0
Simplify
ln(π)×x=0
Rewrite the expression
x=0
(ln(2)−logπ(2)x)×ln(π)π2ln(22)=5,x=0
Simplify
More Steps

Evaluate
(ln(2)−logπ(2)x)×ln(π)π2ln(22)
Remove the unnecessary parentheses
ln(2)−logπ(2)x×ln(π)π2ln(22)
Simplify
ln(2)−logπ(2)x×ln(π)π2×2ln(2)
Use the commutative property to reorder the terms
ln(2)−logπ(2)x×ln(π)2π2ln(2)
Multiply the terms
More Steps

Multiply the terms
ln(2)−logπ(2)x×ln(π)
Multiply the terms
ln(2)−logπ(2)xln(π)
Use the commutative property to reorder the terms
ln(2)−logπ(2)ln(π)×x
ln(2)−logπ(2)ln(π)×x2π2ln(2)
Multiply by the reciprocal
2π2ln(2)×ln(π)×xln(2)−logπ(2)
Multiply the terms
ln(π)×x2π2ln(2)×(ln(2)−logπ(2))
Multiply the terms
More Steps

Evaluate
2π2ln(2)×(ln(2)−logπ(2))
Multiply the terms
(2ln(2)−2logπ(2))π2ln(2)
Multiply the terms
(2π2ln(2)−2π2logπ(2))×ln(2)
Apply the distributive property
2π2ln(2)×ln(2)−2π2logπ(2)×ln(2)
Multiply the numbers
2(ln(2))2π2−2π2logπ(2)×ln(2)
ln(π)×x2(ln(2))2π2−2π2logπ(2)×ln(2)
ln(π)×x2(ln(2))2π2−2π2logπ(2)×ln(2)=5
Cross multiply
2(ln(2))2π2−2π2logπ(2)×ln(2)=ln(π)×x×5
Simplify the equation
2(ln(2))2π2−2π2logπ(2)×ln(2)=5ln(π)×x
Swap the sides of the equation
5ln(π)×x=2(ln(2))2π2−2π2logπ(2)×ln(2)
Divide both sides
5ln(π)5ln(π)×x=5ln(π)2(ln(2))2π2−2π2logπ(2)×ln(2)
Divide the numbers
x=5ln(π)2(ln(2))2π2−2π2logπ(2)×ln(2)
Check if the solution is in the defined range
x=5ln(π)2(ln(2))2π2−2π2logπ(2)×ln(2),x=0
Solution
x=5ln(π)2(ln(2))2π2−2π2logπ(2)×ln(2)
Alternative Form
x≈0.20949
Show Solution
