Question
Solve the equation
x=16ln(π)(ln(30))2π2−π2logπ(30)×ln(30)
Alternative Form
x≈0.788126
Evaluate
(ln(30)−logπ(30)x)×ln(π)π2ln(302)=32
Find the domain
More Steps

Evaluate
(ln(30)−logπ(30)x)×ln(π)=0
Simplify
More Steps

Evaluate
(ln(30)−logπ(30)x)×ln(π)
Remove the unnecessary parentheses
ln(30)−logπ(30)x×ln(π)
Multiply the terms
ln(30)−logπ(30)xln(π)
Use the commutative property to reorder the terms
ln(30)−logπ(30)ln(π)×x
ln(30)−logπ(30)ln(π)×x=0
Simplify
ln(π)×x=0
Rewrite the expression
x=0
(ln(30)−logπ(30)x)×ln(π)π2ln(302)=32,x=0
Simplify
More Steps

Evaluate
(ln(30)−logπ(30)x)×ln(π)π2ln(302)
Remove the unnecessary parentheses
ln(30)−logπ(30)x×ln(π)π2ln(302)
Simplify
ln(30)−logπ(30)x×ln(π)π2×2ln(30)
Use the commutative property to reorder the terms
ln(30)−logπ(30)x×ln(π)2π2ln(30)
Multiply the terms
More Steps

Multiply the terms
ln(30)−logπ(30)x×ln(π)
Multiply the terms
ln(30)−logπ(30)xln(π)
Use the commutative property to reorder the terms
ln(30)−logπ(30)ln(π)×x
ln(30)−logπ(30)ln(π)×x2π2ln(30)
Multiply by the reciprocal
2π2ln(30)×ln(π)×xln(30)−logπ(30)
Multiply the terms
ln(π)×x2π2ln(30)×(ln(30)−logπ(30))
Multiply the terms
More Steps

Evaluate
2π2ln(30)×(ln(30)−logπ(30))
Multiply the terms
(2ln(30)−2logπ(30))π2ln(30)
Multiply the terms
(2π2ln(30)−2π2logπ(30))×ln(30)
Apply the distributive property
2π2ln(30)×ln(30)−2π2logπ(30)×ln(30)
Multiply the numbers
2(ln(30))2π2−2π2logπ(30)×ln(30)
ln(π)×x2(ln(30))2π2−2π2logπ(30)×ln(30)
ln(π)×x2(ln(30))2π2−2π2logπ(30)×ln(30)=32
Cross multiply
2(ln(30))2π2−2π2logπ(30)×ln(30)=ln(π)×x×32
Simplify the equation
2(ln(30))2π2−2π2logπ(30)×ln(30)=32ln(π)×x
Rewrite the expression
2((ln(30))2π2−π2logπ(30)×ln(30))=2×16ln(π)×x
Evaluate
(ln(30))2π2−π2logπ(30)×ln(30)=16ln(π)×x
Swap the sides of the equation
16ln(π)×x=(ln(30))2π2−π2logπ(30)×ln(30)
Divide both sides
16ln(π)16ln(π)×x=16ln(π)(ln(30))2π2−π2logπ(30)×ln(30)
Divide the numbers
x=16ln(π)(ln(30))2π2−π2logπ(30)×ln(30)
Check if the solution is in the defined range
x=16ln(π)(ln(30))2π2−π2logπ(30)×ln(30),x=0
Solution
x=16ln(π)(ln(30))2π2−π2logπ(30)×ln(30)
Alternative Form
x≈0.788126
Show Solution
