Question
Simplify the expression
ln(π)×x2(ln(10))2π2−2π2logπ(10)×ln(10)
Evaluate
(ln(10)−logπ(10)x)×ln(π)π2ln(102)
Remove the unnecessary parentheses
ln(10)−logπ(10)x×ln(π)π2ln(102)
Simplify
ln(10)−logπ(10)x×ln(π)π2×2ln(10)
Use the commutative property to reorder the terms
ln(10)−logπ(10)x×ln(π)2π2ln(10)
Multiply the terms
More Steps

Multiply the terms
ln(10)−logπ(10)x×ln(π)
Multiply the terms
ln(10)−logπ(10)xln(π)
Use the commutative property to reorder the terms
ln(10)−logπ(10)ln(π)×x
ln(10)−logπ(10)ln(π)×x2π2ln(10)
Multiply by the reciprocal
2π2ln(10)×ln(π)×xln(10)−logπ(10)
Multiply the terms
ln(π)×x2π2ln(10)×(ln(10)−logπ(10))
Solution
More Steps

Evaluate
2π2ln(10)×(ln(10)−logπ(10))
Multiply the terms
(2ln(10)−2logπ(10))π2ln(10)
Multiply the terms
More Steps

Evaluate
(2ln(10)−2logπ(10))π2
Apply the distributive property
2ln(10)×π2−2logπ(10)×π2
Use the commutative property to reorder the terms
2π2ln(10)−2logπ(10)×π2
Use the commutative property to reorder the terms
2π2ln(10)−2π2logπ(10)
(2π2ln(10)−2π2logπ(10))×ln(10)
Apply the distributive property
2π2ln(10)×ln(10)−2π2logπ(10)×ln(10)
Multiply the numbers
More Steps

Evaluate
2π2ln(10)×ln(10)
Multiply the terms
2π2(ln(10))2
Use the commutative property to reorder the terms
2(ln(10))2π2
2(ln(10))2π2−2π2logπ(10)×ln(10)
ln(π)×x2(ln(10))2π2−2π2logπ(10)×ln(10)
Show Solution

Find the excluded values
x=0
Evaluate
(ln(10)−logπ(10)x)×ln(π)π2ln(102)
To find the excluded values,set the denominators equal to 0
(ln(10)−logπ(10)x)×ln(π)=0
Simplify
More Steps

Evaluate
(ln(10)−logπ(10)x)×ln(π)
Remove the unnecessary parentheses
ln(10)−logπ(10)x×ln(π)
Multiply the terms
ln(10)−logπ(10)xln(π)
Use the commutative property to reorder the terms
ln(10)−logπ(10)ln(π)×x
ln(10)−logπ(10)ln(π)×x=0
Simplify
ln(π)×x=0
Solution
x=0
Show Solution
