Question
Solve the equation
x1=2891−4249,x2=2891+4249
Alternative Form
x1≈0.921987,x2≈5.578013
Evaluate
(29x×7)−x((x−2)×7)=36
Remove the parentheses
(29x×7)−x(x−2)×7=36
Simplify
More Steps

Evaluate
(29x×7)−x(x−2)×7
Multiply the terms
(263x)−x(x−2)×7
Remove the unnecessary parentheses
263x−x(x−2)×7
Use the commutative property to reorder the terms
263x−7x(x−2)
263x−7x(x−2)=36
Multiply both sides of the equation by LCD
(263x−7x(x−2))×2=36×2
Simplify the equation
More Steps

Evaluate
(263x−7x(x−2))×2
Apply the distributive property
263x×2−7x(x−2)×2
Simplify
63x−7x(x−2)×2
Multiply the terms
63x−14x(x−2)
Expand the expression
More Steps

Calculate
−14x(x−2)
Apply the distributive property
−14x×x−(−14x×2)
Multiply the terms
−14x2−(−14x×2)
Multiply the numbers
−14x2−(−28x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x2+28x
63x−14x2+28x
Add the terms
More Steps

Evaluate
63x+28x
Collect like terms by calculating the sum or difference of their coefficients
(63+28)x
Add the numbers
91x
91x−14x2
91x−14x2=36×2
Simplify the equation
91x−14x2=72
Move the expression to the left side
91x−14x2−72=0
Rewrite in standard form
−14x2+91x−72=0
Multiply both sides
14x2−91x+72=0
Substitute a=14,b=−91 and c=72 into the quadratic formula x=2a−b±b2−4ac
x=2×1491±(−91)2−4×14×72
Simplify the expression
x=2891±(−91)2−4×14×72
Simplify the expression
More Steps

Evaluate
(−91)2−4×14×72
Multiply the terms
More Steps

Multiply the terms
4×14×72
Multiply the terms
56×72
Multiply the numbers
4032
(−91)2−4032
Rewrite the expression
912−4032
Evaluate the power
8281−4032
Subtract the numbers
4249
x=2891±4249
Separate the equation into 2 possible cases
x=2891+4249x=2891−4249
Solution
x1=2891−4249,x2=2891+4249
Alternative Form
x1≈0.921987,x2≈5.578013
Show Solution
