Question
Solve the equation
x1=4445−4452−4032,x2=4445+4452−4032
Alternative Form
x1≈1.138409,x2≈221.361591
Evaluate
((9x×7)÷2)−x((x−2)÷7)=36
Simplify
More Steps

Evaluate
((9x×7)÷2)−x((x−2)÷7)
Multiply the terms
(63x÷2)−x((x−2)÷7)
Rewrite the expression
263x−x((x−2)÷7)
Rewrite the expression
263x−x×7x−2
Multiply the terms
263x−7x(x−2)
263x−7x(x−2)=36
Multiply both sides of the equation by LCD
(263x−7x(x−2))×14=36×14
Simplify the equation
More Steps

Evaluate
(263x−7x(x−2))×14
Apply the distributive property
263x×14−7x(x−2)×14
Simplify
63x×7−x(x−2)×2
Multiply the numbers
441x−x(x−2)×2
Multiply the terms
441x−2x(x−2)
Expand the expression
More Steps

Calculate
−2x(x−2)
Apply the distributive property
−2x×x−(−2x×2)
Multiply the terms
−2x2−(−2x×2)
Multiply the numbers
−2x2−(−4x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2x2+4x
441x−2x2+4x
Add the terms
More Steps

Evaluate
441x+4x
Collect like terms by calculating the sum or difference of their coefficients
(441+4)x
Add the numbers
445x
445x−2x2
445x−2x2=36×14
Simplify the equation
445x−2x2=504
Move the expression to the left side
445x−2x2−504=0
Rewrite in standard form
−2x2+445x−504=0
Multiply both sides
2x2−445x+504=0
Substitute a=2,b=−445 and c=504 into the quadratic formula x=2a−b±b2−4ac
x=2×2445±(−445)2−4×2×504
Simplify the expression
x=4445±(−445)2−4×2×504
Simplify the expression
More Steps

Evaluate
(−445)2−4×2×504
Multiply the terms
More Steps

Multiply the terms
4×2×504
Multiply the terms
8×504
Multiply the numbers
4032
(−445)2−4032
Calculate
4452−4032
x=4445±4452−4032
Separate the equation into 2 possible cases
x=4445+4452−4032x=4445−4452−4032
Solution
x1=4445−4452−4032,x2=4445+4452−4032
Alternative Form
x1≈1.138409,x2≈221.361591
Show Solution
