Question
Simplify the expression
12ab−15b2
Evaluate
(2a−b)2−4(a−2b)2
Expand the expression
4a2−4ab+b2−4(a−2b)2
Expand the expression
More Steps

Calculate
−4(a−2b)2
Simplify
−4(a2−4ab+4b2)
Apply the distributive property
−4a2−(−4×4ab)−4×4b2
Multiply the numbers
−4a2−(−16ab)−4×4b2
Multiply the numbers
−4a2−(−16ab)−16b2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4a2+16ab−16b2
4a2−4ab+b2−4a2+16ab−16b2
The sum of two opposites equals 0
More Steps

Evaluate
4a2−4a2
Collect like terms
(4−4)a2
Add the coefficients
0×a2
Calculate
0
0−4ab+b2+16ab−16b2
Remove 0
−4ab+b2+16ab−16b2
Add the terms
More Steps

Evaluate
−4ab+16ab
Collect like terms by calculating the sum or difference of their coefficients
(−4+16)ab
Add the numbers
12ab
12ab+b2−16b2
Solution
More Steps

Evaluate
b2−16b2
Collect like terms by calculating the sum or difference of their coefficients
(1−16)b2
Subtract the numbers
−15b2
12ab−15b2
Show Solution

Factor the expression
3b(4a−5b)
Evaluate
(2a−b)2−4(a−2b)2
Use a2−b2=(a−b)(a+b) to factor the expression
((2a−b)+2(a−2b))((2a−b)−2(a−2b))
Calculate
(4a−5b)×3b
Solution
3b(4a−5b)
Show Solution
