Question
Simplify the expression
16a3−24a2b+12ab2−2b3−8
Evaluate
(2a−b)2×2(2a−b)−8
Multiply
More Steps

Multiply the terms
(2a−b)2×2(2a−b)
Multiply the terms with the same base by adding their exponents
(2a−b)2+1×2
Add the numbers
(2a−b)3×2
Use the commutative property to reorder the terms
2(2a−b)3
2(2a−b)3−8
Solution
More Steps

Calculate
2(2a−b)3
Simplify
2(8a3−12a2b+6ab2−b3)
Apply the distributive property
2×8a3−2×12a2b+2×6ab2−2b3
Multiply the numbers
16a3−2×12a2b+2×6ab2−2b3
Multiply the numbers
16a3−24a2b+2×6ab2−2b3
Multiply the numbers
16a3−24a2b+12ab2−2b3
16a3−24a2b+12ab2−2b3−8
Show Solution

Factor the expression
2(8a3−12a2b+6ab2−b3−4)
Evaluate
(2a−b)2×2(2a−b)−8
Multiply
More Steps

Evaluate
(2a−b)2×2(2a−b)
Multiply the terms with the same base by adding their exponents
(2a−b)2+1×2
Add the numbers
(2a−b)3×2
Use the commutative property to reorder the terms
2(2a−b)3
2(2a−b)3−8
Simplify
More Steps

Evaluate
2(2a−b)3
Simplify
More Steps

Evaluate
(2a−b)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
(2a)3−3(2a)2b+3×2ab2−b3
Calculate
8a3−12a2b+6ab2−b3
2(8a3−12a2b+6ab2−b3)
Apply the distributive property
2×8a3+2(−12a2b)+2×6ab2+2(−b3)
Multiply the terms
16a3+2(−12a2b)+2×6ab2+2(−b3)
Multiply the terms
More Steps

Evaluate
2(−12)
Multiplying or dividing an odd number of negative terms equals a negative
−2×12
Multiply the numbers
−24
16a3−24a2b+2×6ab2+2(−b3)
Multiply the terms
16a3−24a2b+12ab2+2(−b3)
Multiply the terms
16a3−24a2b+12ab2−2b3
16a3−24a2b+12ab2−2b3−8
Solution
2(8a3−12a2b+6ab2−b3−4)
Show Solution
