Question
Find the roots
x1=1198−11089,x2=1198+11089
Alternative Form
x1≈−0.664029,x2≈18.482211
Evaluate
11x2−196x−135
To find the roots of the expression,set the expression equal to 0
11x2−196x−135=0
Substitute a=11,b=−196 and c=−135 into the quadratic formula x=2a−b±b2−4ac
x=2×11196±(−196)2−4×11(−135)
Simplify the expression
x=22196±(−196)2−4×11(−135)
Simplify the expression
More Steps

Evaluate
(−196)2−4×11(−135)
Multiply
More Steps

Multiply the terms
4×11(−135)
Rewrite the expression
−4×11×135
Multiply the terms
−5940
(−196)2−(−5940)
Rewrite the expression
1962−(−5940)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1962+5940
Evaluate the power
38416+5940
Add the numbers
44356
x=22196±44356
Simplify the radical expression
More Steps

Evaluate
44356
Write the expression as a product where the root of one of the factors can be evaluated
4×11089
Write the number in exponential form with the base of 2
22×11089
The root of a product is equal to the product of the roots of each factor
22×11089
Reduce the index of the radical and exponent with 2
211089
x=22196±211089
Separate the equation into 2 possible cases
x=22196+211089x=22196−211089
Simplify the expression
More Steps

Evaluate
x=22196+211089
Divide the terms
More Steps

Evaluate
22196+211089
Rewrite the expression
222(98+11089)
Cancel out the common factor 2
1198+11089
x=1198+11089
x=1198+11089x=22196−211089
Simplify the expression
More Steps

Evaluate
x=22196−211089
Divide the terms
More Steps

Evaluate
22196−211089
Rewrite the expression
222(98−11089)
Cancel out the common factor 2
1198−11089
x=1198−11089
x=1198+11089x=1198−11089
Solution
x1=1198−11089,x2=1198+11089
Alternative Form
x1≈−0.664029,x2≈18.482211
Show Solution
