Question
Simplify the expression
4516x−1211
Evaluate
52(31x−815)−31(21−32x)
Multiply the terms
More Steps

Evaluate
52(31x−815)
Apply the distributive property
52×31x−52×815
Multiply the numbers
More Steps

Evaluate
52×31
To multiply the fractions,multiply the numerators and denominators separately
5×32
Multiply the numbers
152
152x−52×815
Multiply the numbers
More Steps

Evaluate
52×815
Reduce the numbers
51×415
Reduce the numbers
1×43
Multiply the numbers
43
152x−43
152x−43−31(21−32x)
Multiply the terms
More Steps

Evaluate
31(21−32x)
Apply the distributive property
31×21−31×32x
Multiply the numbers
More Steps

Evaluate
31×21
To multiply the fractions,multiply the numerators and denominators separately
3×21
Multiply the numbers
61
61−31×32x
Multiply the numbers
More Steps

Evaluate
31×32
To multiply the fractions,multiply the numerators and denominators separately
3×32
Multiply the numbers
92
61−92x
152x−43−(61−92x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152x−43−61+92x
Add the terms
More Steps

Evaluate
152x+92x
Collect like terms by calculating the sum or difference of their coefficients
(152+92)x
Add the numbers
More Steps

Evaluate
152+92
Reduce fractions to a common denominator
15×32×3+9×52×5
Multiply the numbers
452×3+9×52×5
Multiply the numbers
452×3+452×5
Write all numerators above the common denominator
452×3+2×5
Multiply the numbers
456+2×5
Multiply the numbers
456+10
Add the numbers
4516
4516x
4516x−43−61
Solution
More Steps

Evaluate
−43−61
Reduce fractions to a common denominator
−4×33×3−6×22
Multiply the numbers
−123×3−6×22
Multiply the numbers
−123×3−122
Write all numerators above the common denominator
12−3×3−2
Multiply the numbers
12−9−2
Subtract the numbers
12−11
Use b−a=−ba=−ba to rewrite the fraction
−1211
4516x−1211
Show Solution

Factor the expression
1801(64x−165)
Evaluate
52(31x−815)−31(21−32x)
Simplify
More Steps

Evaluate
52(31x−815)
Apply the distributive property
52×31x+52(−815)
Multiply the terms
More Steps

Evaluate
52×31
To multiply the fractions,multiply the numerators and denominators separately
5×32
Multiply the numbers
152
152x+52(−815)
Multiply the terms
More Steps

Evaluate
52(−815)
Multiplying or dividing an odd number of negative terms equals a negative
−52×815
Reduce the numbers
−51×415
Reduce the numbers
−1×43
Multiply the numbers
−43
152x−43
152x−43−31(21−32x)
Simplify
More Steps

Evaluate
−31(21−32x)
Apply the distributive property
−31×21−31(−32x)
Multiply the terms
More Steps

Evaluate
−31×21
To multiply the fractions,multiply the numerators and denominators separately
−3×21
Multiply the numbers
−61
−61−31(−32x)
Multiply the terms
More Steps

Evaluate
−31(−32)
Multiplying or dividing an even number of negative terms equals a positive
31×32
To multiply the fractions,multiply the numerators and denominators separately
3×32
Multiply the numbers
92
−61+92x
152x−43−61+92x
Add the terms
More Steps

Evaluate
152x+92x
Collect like terms by calculating the sum or difference of their coefficients
(152+92)x
Add the numbers
More Steps

Evaluate
152+92
Reduce fractions to a common denominator
15×32×3+9×52×5
Multiply the numbers
452×3+9×52×5
Multiply the numbers
452×3+452×5
Write all numerators above the common denominator
452×3+2×5
Multiply the numbers
456+2×5
Multiply the numbers
456+10
Add the numbers
4516
4516x
4516x−43−61
Subtract the numbers
More Steps

Evaluate
−43−61
Reduce fractions to a common denominator
−4×33×3−6×22
Multiply the numbers
−123×3−6×22
Multiply the numbers
−123×3−122
Write all numerators above the common denominator
12−3×3−2
Multiply the numbers
12−9−2
Subtract the numbers
12−11
Use b−a=−ba=−ba to rewrite the fraction
−1211
4516x−1211
Solution
1801(64x−165)
Show Solution

Find the roots
x=64165
Alternative Form
x=2.578125
Evaluate
52(31x−815)−31(21−32x)
To find the roots of the expression,set the expression equal to 0
52(31x−815)−31(21−32x)=0
Multiply the terms
More Steps

Evaluate
52(31x−815)
Apply the distributive property
52×31x−52×815
Multiply the numbers
More Steps

Evaluate
52×31
To multiply the fractions,multiply the numerators and denominators separately
5×32
Multiply the numbers
152
152x−52×815
Multiply the numbers
More Steps

Evaluate
52×815
Reduce the numbers
51×415
Reduce the numbers
1×43
Multiply the numbers
43
152x−43
152x−43−31(21−32x)=0
Multiply the terms
More Steps

Evaluate
31(21−32x)
Apply the distributive property
31×21−31×32x
Multiply the numbers
More Steps

Evaluate
31×21
To multiply the fractions,multiply the numerators and denominators separately
3×21
Multiply the numbers
61
61−31×32x
Multiply the numbers
More Steps

Evaluate
31×32
To multiply the fractions,multiply the numerators and denominators separately
3×32
Multiply the numbers
92
61−92x
152x−43−(61−92x)=0
Subtract the terms
More Steps

Simplify
152x−43−(61−92x)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
152x−43−61+92x
Add the terms
More Steps

Evaluate
152x+92x
Collect like terms by calculating the sum or difference of their coefficients
(152+92)x
Add the numbers
4516x
4516x−43−61
Subtract the numbers
More Steps

Evaluate
−43−61
Reduce fractions to a common denominator
−4×33×3−6×22
Multiply the numbers
−123×3−6×22
Multiply the numbers
−123×3−122
Write all numerators above the common denominator
12−3×3−2
Multiply the numbers
12−9−2
Subtract the numbers
12−11
Use b−a=−ba=−ba to rewrite the fraction
−1211
4516x−1211
4516x−1211=0
Move the constant to the right-hand side and change its sign
4516x=0+1211
Add the terms
4516x=1211
Multiply by the reciprocal
4516x×1645=1211×1645
Multiply
x=1211×1645
Solution
More Steps

Evaluate
1211×1645
Reduce the numbers
411×1615
To multiply the fractions,multiply the numerators and denominators separately
4×1611×15
Multiply the numbers
4×16165
Multiply the numbers
64165
x=64165
Alternative Form
x=2.578125
Show Solution
