Question
Simplify the expression
2024a4−4104675a5−54702a2
Evaluate
2024a4−2025a3×2027a2−2026a2×27
Multiply
More Steps

Multiply the terms
−2025a3×2027a2
Multiply the terms
−4104675a3×a2
Multiply the terms with the same base by adding their exponents
−4104675a3+2
Add the numbers
−4104675a5
2024a4−4104675a5−2026a2×27
Solution
2024a4−4104675a5−54702a2
Show Solution

Factor the expression
a2(2024a2−4104675a3−54702)
Evaluate
2024a4−2025a3×2027a2−2026a2×27
Multiply
More Steps

Multiply the terms
2025a3×2027a2
Multiply the terms
4104675a3×a2
Multiply the terms with the same base by adding their exponents
4104675a3+2
Add the numbers
4104675a5
2024a4−4104675a5−2026a2×27
Multiply the terms
2024a4−4104675a5−54702a2
Rewrite the expression
a2×2024a2−a2×4104675a3−a2×54702
Solution
a2(2024a2−4104675a3−54702)
Show Solution

Find the roots
a1≈−0.236923,a2=0
Evaluate
2024a4−2025a3×2027a2−2026a2×27
To find the roots of the expression,set the expression equal to 0
2024a4−2025a3×2027a2−2026a2×27=0
Multiply
More Steps

Multiply the terms
2025a3×2027a2
Multiply the terms
4104675a3×a2
Multiply the terms with the same base by adding their exponents
4104675a3+2
Add the numbers
4104675a5
2024a4−4104675a5−2026a2×27=0
Multiply the terms
2024a4−4104675a5−54702a2=0
Factor the expression
a2(2024a2−4104675a3−54702)=0
Separate the equation into 2 possible cases
a2=02024a2−4104675a3−54702=0
The only way a power can be 0 is when the base equals 0
a=02024a2−4104675a3−54702=0
Solve the equation
a=0a≈−0.236923
Solution
a1≈−0.236923,a2=0
Show Solution
