Question
Identify the conic
Find the standard equation of the ellipse
Find the center of the ellipse
Find the foci of the ellipse
Load more

25x2+64y2=1
Evaluate
25y2=1600−64x2
Move the expression to the left-hand side and change its sign
25y2−(−64x2)=1600
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
25y2+64x2=1600
Use the commutative property to reorder the terms
64x2+25y2=1600
Multiply both sides of the equation by 16001
(64x2+25y2)×16001=1600×16001
Multiply the terms
More Steps

Evaluate
(64x2+25y2)×16001
Use the the distributive property to expand the expression
64x2×16001+25y2×16001
Multiply the numbers
More Steps

Evaluate
64×16001
Reduce the numbers
1×251
Multiply the numbers
251
251x2+25y2×16001
Multiply the numbers
More Steps

Evaluate
25×16001
Reduce the numbers
1×641
Multiply the numbers
641
251x2+641y2
251x2+641y2=1600×16001
Multiply the terms
More Steps

Evaluate
1600×16001
Reduce the numbers
1×1
Simplify
1
251x2+641y2=1
Use a=a11 to transform the expression
25x2+641y2=1
Solution
25x2+64y2=1
Show Solution

Solve the equation
Solve for x
Solve for y
x=8564−y2x=−8564−y2
Evaluate
25y2=1600−64x2
Swap the sides of the equation
1600−64x2=25y2
Move the constant to the right-hand side and change its sign
−64x2=25y2−1600
Change the signs on both sides of the equation
64x2=−25y2+1600
Divide both sides
6464x2=64−25y2+1600
Divide the numbers
x2=64−25y2+1600
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±64−25y2+1600
Simplify the expression
More Steps

Evaluate
64−25y2+1600
To take a root of a fraction,take the root of the numerator and denominator separately
64−25y2+1600
Simplify the radical expression
More Steps

Evaluate
−25y2+1600
Factor the expression
25(64−y2)
The root of a product is equal to the product of the roots of each factor
25×64−y2
Evaluate the root
564−y2
64564−y2
Simplify the radical expression
More Steps

Evaluate
64
Write the number in exponential form with the base of 8
82
Reduce the index of the radical and exponent with 2
8
8564−y2
x=±8564−y2
Solution
x=8564−y2x=−8564−y2
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
25y2=1600−64x2
To test if the graph of 25y2=1600−64x2 is symmetry with respect to the origin,substitute -x for x and -y for y
25(−y)2=1600−64(−x)2
Evaluate
25y2=1600−64(−x)2
Evaluate
25y2=1600−64x2
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=−25y64x
Calculate
25y2=1600−64x2
Take the derivative of both sides
dxd(25y2)=dxd(1600−64x2)
Calculate the derivative
More Steps

Evaluate
dxd(25y2)
Use differentiation rules
dyd(25y2)×dxdy
Evaluate the derivative
More Steps

Evaluate
dyd(25y2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
25×dyd(y2)
Use dxdxn=nxn−1 to find derivative
25×2y
Multiply the terms
50y
50ydxdy
50ydxdy=dxd(1600−64x2)
Calculate the derivative
More Steps

Evaluate
dxd(1600−64x2)
Use differentiation rules
dxd(1600)+dxd(−64x2)
Use dxd(c)=0 to find derivative
0+dxd(−64x2)
Evaluate the derivative
More Steps

Evaluate
dxd(−64x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−64×dxd(x2)
Use dxdxn=nxn−1 to find derivative
−64×2x
Multiply the terms
−128x
0−128x
Evaluate
−128x
50ydxdy=−128x
Divide both sides
50y50ydxdy=50y−128x
Divide the numbers
dxdy=50y−128x
Solution
More Steps

Evaluate
50y−128x
Cancel out the common factor 2
25y−64x
Use b−a=−ba=−ba to rewrite the fraction
−25y64x
dxdy=−25y64x
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=−625y31600y2+4096x2
Calculate
25y2=1600−64x2
Take the derivative of both sides
dxd(25y2)=dxd(1600−64x2)
Calculate the derivative
More Steps

Evaluate
dxd(25y2)
Use differentiation rules
dyd(25y2)×dxdy
Evaluate the derivative
More Steps

Evaluate
dyd(25y2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
25×dyd(y2)
Use dxdxn=nxn−1 to find derivative
25×2y
Multiply the terms
50y
50ydxdy
50ydxdy=dxd(1600−64x2)
Calculate the derivative
More Steps

Evaluate
dxd(1600−64x2)
Use differentiation rules
dxd(1600)+dxd(−64x2)
Use dxd(c)=0 to find derivative
0+dxd(−64x2)
Evaluate the derivative
More Steps

Evaluate
dxd(−64x2)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
−64×dxd(x2)
Use dxdxn=nxn−1 to find derivative
−64×2x
Multiply the terms
−128x
0−128x
Evaluate
−128x
50ydxdy=−128x
Divide both sides
50y50ydxdy=50y−128x
Divide the numbers
dxdy=50y−128x
Divide the numbers
More Steps

Evaluate
50y−128x
Cancel out the common factor 2
25y−64x
Use b−a=−ba=−ba to rewrite the fraction
−25y64x
dxdy=−25y64x
Take the derivative of both sides
dxd(dxdy)=dxd(−25y64x)
Calculate the derivative
dx2d2y=dxd(−25y64x)
Use differentiation rules
dx2d2y=−(25y)2dxd(64x)×25y−64x×dxd(25y)
Calculate the derivative
More Steps

Evaluate
dxd(64x)
Simplify
64×dxd(x)
Rewrite the expression
64×1
Any expression multiplied by 1 remains the same
64
dx2d2y=−(25y)264×25y−64x×dxd(25y)
Calculate the derivative
More Steps

Evaluate
dxd(25y)
Simplify
25×dxd(y)
Calculate
25dxdy
dx2d2y=−(25y)264×25y−64x×25dxdy
Calculate
dx2d2y=−(25y)21600y−64x×25dxdy
Calculate
dx2d2y=−(25y)21600y−1600xdxdy
Calculate
More Steps

Evaluate
(25y)2
Evaluate the power
252y2
Evaluate the power
625y2
dx2d2y=−625y21600y−1600xdxdy
Calculate
dx2d2y=−25y264y−64xdxdy
Use equation dxdy=−25y64x to substitute
dx2d2y=−25y264y−64x(−25y64x)
Solution
More Steps

Calculate
−25y264y−64x(−25y64x)
Multiply
More Steps

Multiply the terms
64x(−25y64x)
Any expression multiplied by 1 remains the same
−64x×25y64x
Multiply the terms
−25y4096x2
−25y264y−(−25y4096x2)
Subtract the terms
More Steps

Simplify
64y−(−25y4096x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
64y+25y4096x2
Reduce fractions to a common denominator
25y64y×25y+25y4096x2
Write all numerators above the common denominator
25y64y×25y+4096x2
Multiply the terms
25y1600y2+4096x2
−25y225y1600y2+4096x2
Divide the terms
More Steps

Evaluate
25y225y1600y2+4096x2
Multiply by the reciprocal
25y1600y2+4096x2×25y21
Multiply the terms
25y×25y21600y2+4096x2
Multiply the terms
625y31600y2+4096x2
−625y31600y2+4096x2
dx2d2y=−625y31600y2+4096x2
Show Solution

Rewrite the equation
r=25+39cos2(θ)4025+39cos2(θ)r=−25+39cos2(θ)4025+39cos2(θ)
Evaluate
25y2=1600−64x2
Move the expression to the left side
25y2+64x2=1600
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
25(sin(θ)×r)2+64(cos(θ)×r)2=1600
Factor the expression
(25sin2(θ)+64cos2(θ))r2=1600
Simplify the expression
(25+39cos2(θ))r2=1600
Divide the terms
r2=25+39cos2(θ)1600
Evaluate the power
r=±25+39cos2(θ)1600
Simplify the expression
More Steps

Evaluate
25+39cos2(θ)1600
To take a root of a fraction,take the root of the numerator and denominator separately
25+39cos2(θ)1600
Simplify the radical expression
More Steps

Evaluate
1600
Write the number in exponential form with the base of 40
402
Reduce the index of the radical and exponent with 2
40
25+39cos2(θ)40
Multiply by the Conjugate
25+39cos2(θ)×25+39cos2(θ)4025+39cos2(θ)
Calculate
25+39cos2(θ)4025+39cos2(θ)
r=±25+39cos2(θ)4025+39cos2(θ)
Solution
r=25+39cos2(θ)4025+39cos2(θ)r=−25+39cos2(θ)4025+39cos2(θ)
Show Solution
