Question
Simplify the expression
111u6−40u3
Evaluate
37u3×3u3−40u3
Solution
More Steps

Evaluate
37u3×3u3
Multiply the terms
111u3×u3
Multiply the terms with the same base by adding their exponents
111u3+3
Add the numbers
111u6
111u6−40u3
Show Solution

Factor the expression
u3(111u3−40)
Evaluate
37u3×3u3−40u3
Multiply
More Steps

Evaluate
37u3×3u3
Multiply the terms
111u3×u3
Multiply the terms with the same base by adding their exponents
111u3+3
Add the numbers
111u6
111u6−40u3
Rewrite the expression
u3×111u3−u3×40
Solution
u3(111u3−40)
Show Solution

Find the roots
u1=0,u2=1112361605
Alternative Form
u1=0,u2≈0.711616
Evaluate
37u3×3u3−40u3
To find the roots of the expression,set the expression equal to 0
37u3×3u3−40u3=0
Multiply
More Steps

Multiply the terms
37u3×3u3
Multiply the terms
111u3×u3
Multiply the terms with the same base by adding their exponents
111u3+3
Add the numbers
111u6
111u6−40u3=0
Factor the expression
u3(111u3−40)=0
Separate the equation into 2 possible cases
u3=0111u3−40=0
The only way a power can be 0 is when the base equals 0
u=0111u3−40=0
Solve the equation
More Steps

Evaluate
111u3−40=0
Move the constant to the right-hand side and change its sign
111u3=0+40
Removing 0 doesn't change the value,so remove it from the expression
111u3=40
Divide both sides
111111u3=11140
Divide the numbers
u3=11140
Take the 3-th root on both sides of the equation
3u3=311140
Calculate
u=311140
Simplify the root
More Steps

Evaluate
311140
To take a root of a fraction,take the root of the numerator and denominator separately
3111340
Simplify the radical expression
3111235
Multiply by the Conjugate
3111×31112235×31112
Simplify
3111×31112235×312321
Multiply the numbers
3111×311122361605
Multiply the numbers
1112361605
u=1112361605
u=0u=1112361605
Solution
u1=0,u2=1112361605
Alternative Form
u1=0,u2≈0.711616
Show Solution
