Question
Simplify the expression
3x2−192x4
Evaluate
3x2−24x4×8
Solution
3x2−192x4
Show Solution

Factor the expression
3x2(1−8x)(1+8x)
Evaluate
3x2−24x4×8
Evaluate
3x2−192x4
Factor out 3x2 from the expression
3x2(1−64x2)
Solution
More Steps

Evaluate
1−64x2
Rewrite the expression in exponential form
12−(8x)2
Use a2−b2=(a−b)(a+b) to factor the expression
(1−8x)(1+8x)
3x2(1−8x)(1+8x)
Show Solution

Find the roots
x1=−81,x2=0,x3=81
Alternative Form
x1=−0.125,x2=0,x3=0.125
Evaluate
3x2−24x4×8
To find the roots of the expression,set the expression equal to 0
3x2−24x4×8=0
Multiply the terms
3x2−192x4=0
Factor the expression
3x2(1−64x2)=0
Divide both sides
x2(1−64x2)=0
Separate the equation into 2 possible cases
x2=01−64x2=0
The only way a power can be 0 is when the base equals 0
x=01−64x2=0
Solve the equation
More Steps

Evaluate
1−64x2=0
Move the constant to the right-hand side and change its sign
−64x2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−64x2=−1
Change the signs on both sides of the equation
64x2=1
Divide both sides
6464x2=641
Divide the numbers
x2=641
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±641
Simplify the expression
More Steps

Evaluate
641
To take a root of a fraction,take the root of the numerator and denominator separately
641
Simplify the radical expression
641
Simplify the radical expression
81
x=±81
Separate the equation into 2 possible cases
x=81x=−81
x=0x=81x=−81
Solution
x1=−81,x2=0,x3=81
Alternative Form
x1=−0.125,x2=0,x3=0.125
Show Solution
