Question
Factor the expression
(b2−b−1)(b2+b+1)
Evaluate
b4−b2−2b−1
Calculate
b4+b3+b2−b3−b2−b−b2−b−1
Rewrite the expression
b2×b2+b2×b+b2−b×b2−b×b−b−b2−b−1
Factor out b2 from the expression
b2(b2+b+1)−b×b2−b×b−b−b2−b−1
Factor out −b from the expression
b2(b2+b+1)−b(b2+b+1)−b2−b−1
Factor out −1 from the expression
b2(b2+b+1)−b(b2+b+1)−(b2+b+1)
Solution
(b2−b−1)(b2+b+1)
Show Solution

Find the roots
b1=−21−23i,b2=−21+23i,b3=21−5,b4=21+5
Alternative Form
b1≈−0.5−0.866025i,b2≈−0.5+0.866025i,b3≈−0.618034,b4≈1.618034
Evaluate
b4−b2−2b−1
To find the roots of the expression,set the expression equal to 0
b4−b2−2b−1=0
Factor the expression
(b2−b−1)(b2+b+1)=0
Separate the equation into 2 possible cases
b2−b−1=0b2+b+1=0
Solve the equation
More Steps

Evaluate
b2−b−1=0
Substitute a=1,b=−1 and c=−1 into the quadratic formula b=2a−b±b2−4ac
b=21±(−1)2−4(−1)
Simplify the expression
More Steps

Evaluate
(−1)2−4(−1)
Evaluate the power
1−4(−1)
Simplify
1−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+4
Add the numbers
5
b=21±5
Separate the equation into 2 possible cases
b=21+5b=21−5
b=21+5b=21−5b2+b+1=0
Solve the equation
More Steps

Evaluate
b2+b+1=0
Substitute a=1,b=1 and c=1 into the quadratic formula b=2a−b±b2−4ac
b=2−1±12−4
Simplify the expression
More Steps

Evaluate
12−4
1 raised to any power equals to 1
1−4
Subtract the numbers
−3
b=2−1±−3
Simplify the radical expression
More Steps

Evaluate
−3
Evaluate the power
3×−1
Evaluate the power
3×i
b=2−1±3×i
Separate the equation into 2 possible cases
b=2−1+3×ib=2−1−3×i
Simplify the expression
b=−21+23ib=2−1−3×i
Simplify the expression
b=−21+23ib=−21−23i
b=21+5b=21−5b=−21+23ib=−21−23i
Solution
b1=−21−23i,b2=−21+23i,b3=21−5,b4=21+5
Alternative Form
b1≈−0.5−0.866025i,b2≈−0.5+0.866025i,b3≈−0.618034,b4≈1.618034
Show Solution
