Question
Simplify the expression
2b6−128
Evaluate
b6×2−18−110
Use the commutative property to reorder the terms
2b6−18−110
Solution
2b6−128
Show Solution

Factor the expression
2(b−2)(b+2)(b2−2b+4)(b2+2b+4)
Evaluate
b6×2−18−110
Use the commutative property to reorder the terms
2b6−18−110
Subtract the numbers
2b6−128
Rewrite the expression
2b6−2×64
Factor out 2 from the expression
2(b6−64)
Factor the expression
More Steps

Evaluate
b6−64
Calculate
b6+2b5−8b3−16b2−2b5−4b4+16b2+32b+4b4+8b3−32b−64
Rewrite the expression
b2×b4+b2×2b3−b2×8b−b2×16−2b×b4−2b×2b3+2b×8b+2b×16+4b4+4×2b3−4×8b−4×16
Factor out b2 from the expression
b2(b4+2b3−8b−16)−2b×b4−2b×2b3+2b×8b+2b×16+4b4+4×2b3−4×8b−4×16
Factor out −2b from the expression
b2(b4+2b3−8b−16)−2b(b4+2b3−8b−16)+4b4+4×2b3−4×8b−4×16
Factor out 4 from the expression
b2(b4+2b3−8b−16)−2b(b4+2b3−8b−16)+4(b4+2b3−8b−16)
Factor out b4+2b3−8b−16 from the expression
(b2−2b+4)(b4+2b3−8b−16)
2(b2−2b+4)(b4+2b3−8b−16)
Factor the expression
More Steps

Evaluate
b4+2b3−8b−16
Calculate
b4−4b2+2b3−8b+4b2−16
Rewrite the expression
b2×b2−b2×4+2b×b2−2b×4+4b2−4×4
Factor out b2 from the expression
b2(b2−4)+2b×b2−2b×4+4b2−4×4
Factor out 2b from the expression
b2(b2−4)+2b(b2−4)+4b2−4×4
Factor out 4 from the expression
b2(b2−4)+2b(b2−4)+4(b2−4)
Factor out b2−4 from the expression
(b2+2b+4)(b2−4)
2(b2−2b+4)(b2+2b+4)(b2−4)
Use a2−b2=(a−b)(a+b) to factor the expression
2(b2−2b+4)(b2+2b+4)(b−2)(b+2)
Solution
2(b−2)(b+2)(b2−2b+4)(b2+2b+4)
Show Solution

Find the roots
b1=−2,b2=2
Evaluate
b6×2−18−110
To find the roots of the expression,set the expression equal to 0
b6×2−18−110=0
Use the commutative property to reorder the terms
2b6−18−110=0
Subtract the numbers
2b6−128=0
Move the constant to the right-hand side and change its sign
2b6=0+128
Removing 0 doesn't change the value,so remove it from the expression
2b6=128
Divide both sides
22b6=2128
Divide the numbers
b6=2128
Divide the numbers
More Steps

Evaluate
2128
Reduce the numbers
164
Calculate
64
b6=64
Take the root of both sides of the equation and remember to use both positive and negative roots
b=±664
Simplify the expression
More Steps

Evaluate
664
Write the number in exponential form with the base of 2
626
Reduce the index of the radical and exponent with 6
2
b=±2
Separate the equation into 2 possible cases
b=2b=−2
Solution
b1=−2,b2=2
Show Solution
