Question
Evaluate the integral
−31(x−3)6x311+C,C∈R
Evaluate
∫(x4)81dx÷(7×7(x−3)6)
Multiply the exponents
∫x4×81dx÷(7×7(x−3)6)
Multiply the terms
More Steps

Multiply the terms
7×7(x−3)6
Cancel out the common factor 7
1×(x−3)6
Multiply the terms
(x−3)6
∫x4×81dx÷(x−3)6
Multiply the numbers
∫x321dx÷(x−3)6
Evaluate the integral
More Steps

Evaluate
∫x321dx
Use the property of integral ∫xndx=n+1xn+1
−32+1x−32+1
Add the numbers
−32+1x−31
Add the numbers
−31x−31
−31x−31÷(x−3)6
Divide the terms
(x−3)6−31x−31
Rewrite the expression
More Steps

Evaluate
−31x−31
Express with a positive exponent using a−n=an1
−31x311
Use b−a=−ba=−ba to rewrite the fraction
−31x311
Simplify
−31x311
(x−3)6−31x311
Use b−a=−ba=−ba to rewrite the fraction
−(x−3)631x311
Simplify
−31(x−3)6x311
Solution
−31(x−3)6x311+C,C∈R
Show Solution
