Question
Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Symmetry with respect to the origin
Evaluate
sin(xy)cos(xy)=1
To test if the graph of sin(xy)cos(xy)=1 is symmetry with respect to the origin,substitute -x for x and -y for y
sin(−x(−y))cos(−x(−y))=1
Evaluate
More Steps

Evaluate
sin(−x(−y))cos(−x(−y))
Multiplying or dividing an even number of negative terms equals a positive
sin(xy)cos(−x(−y))
Multiplying or dividing an even number of negative terms equals a positive
sin(xy)cos(xy)
sin(xy)cos(xy)=1
Solution
Symmetry with respect to the origin
Show Solution

Find the first derivative
dxdy=−xy
Calculate
sin(xy)cos(xy)=1
Take the derivative of both sides
dxd(sin(xy)cos(xy))=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(sin(xy)cos(xy))
Use differentiation rules
dxd(sin(xy))×cos(xy)+sin(xy)×dxd(cos(xy))
Evaluate the derivative
(y+xdxdy)cos2(xy)+sin(xy)×dxd(cos(xy))
Evaluate the derivative
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)=dxd(1)
Calculate the derivative
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)=0
Rewrite the expression
cos2(xy)(y+xdxdy)−sin2(xy)(y+xdxdy)=0
Calculate
More Steps

Evaluate
cos2(xy)(y+xdxdy)−sin2(xy)(y+xdxdy)
Expand the expression
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)(y+xdxdy)
Expand the expression
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)×y−sin2(xy)×xdxdy
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)×y−sin2(xy)×xdxdy=0
Collect like terms by calculating the sum or difference of their coefficients
cos2(xy)×y−sin2(xy)×y+(cos2(xy)×x−sin2(xy)×x)dxdy=0
Move the constant to the right side
(cos2(xy)×x−sin2(xy)×x)dxdy=0−(cos2(xy)×y−sin2(xy)×y)
Subtract the terms
More Steps

Evaluate
0−(cos2(xy)×y−sin2(xy)×y)
Removing 0 doesn't change the value,so remove it from the expression
−(cos2(xy)×y−sin2(xy)×y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−cos2(xy)×y+sin2(xy)×y
(cos2(xy)×x−sin2(xy)×x)dxdy=−cos2(xy)×y+sin2(xy)×y
Divide both sides
cos2(xy)×x−sin2(xy)×x(cos2(xy)×x−sin2(xy)×x)dxdy=cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Divide the numbers
dxdy=cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Solution
More Steps

Evaluate
cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Rewrite the expression
cos2(xy)×x−sin2(xy)×x(−cos2(xy)+sin2(xy))y
Rewrite the expression
(−cos2(xy)+sin2(xy))(−x)(−cos2(xy)+sin2(xy))y
Reduce the fraction
−xy
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Show Solution

Find the second derivative
dx2d2y=x22y
Calculate
sin(xy)cos(xy)=1
Take the derivative of both sides
dxd(sin(xy)cos(xy))=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(sin(xy)cos(xy))
Use differentiation rules
dxd(sin(xy))×cos(xy)+sin(xy)×dxd(cos(xy))
Evaluate the derivative
(y+xdxdy)cos2(xy)+sin(xy)×dxd(cos(xy))
Evaluate the derivative
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)=dxd(1)
Calculate the derivative
(y+xdxdy)cos2(xy)−sin2(xy)(y+xdxdy)=0
Rewrite the expression
cos2(xy)(y+xdxdy)−sin2(xy)(y+xdxdy)=0
Calculate
More Steps

Evaluate
cos2(xy)(y+xdxdy)−sin2(xy)(y+xdxdy)
Expand the expression
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)(y+xdxdy)
Expand the expression
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)×y−sin2(xy)×xdxdy
cos2(xy)×y+cos2(xy)×xdxdy−sin2(xy)×y−sin2(xy)×xdxdy=0
Collect like terms by calculating the sum or difference of their coefficients
cos2(xy)×y−sin2(xy)×y+(cos2(xy)×x−sin2(xy)×x)dxdy=0
Move the constant to the right side
(cos2(xy)×x−sin2(xy)×x)dxdy=0−(cos2(xy)×y−sin2(xy)×y)
Subtract the terms
More Steps

Evaluate
0−(cos2(xy)×y−sin2(xy)×y)
Removing 0 doesn't change the value,so remove it from the expression
−(cos2(xy)×y−sin2(xy)×y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−cos2(xy)×y+sin2(xy)×y
(cos2(xy)×x−sin2(xy)×x)dxdy=−cos2(xy)×y+sin2(xy)×y
Divide both sides
cos2(xy)×x−sin2(xy)×x(cos2(xy)×x−sin2(xy)×x)dxdy=cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Divide the numbers
dxdy=cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Divide the numbers
More Steps

Evaluate
cos2(xy)×x−sin2(xy)×x−cos2(xy)×y+sin2(xy)×y
Rewrite the expression
cos2(xy)×x−sin2(xy)×x(−cos2(xy)+sin2(xy))y
Rewrite the expression
(−cos2(xy)+sin2(xy))(−x)(−cos2(xy)+sin2(xy))y
Reduce the fraction
−xy
Use b−a=−ba=−ba to rewrite the fraction
−xy
dxdy=−xy
Take the derivative of both sides
dxd(dxdy)=dxd(−xy)
Calculate the derivative
dx2d2y=dxd(−xy)
Use differentiation rules
dx2d2y=−x2dxd(y)×x−y×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
dx2d2y=−x2dxdy×x−y×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=−x2dxdy×x−y×1
Use the commutative property to reorder the terms
dx2d2y=−x2xdxdy−y×1
Any expression multiplied by 1 remains the same
dx2d2y=−x2xdxdy−y
Use equation dxdy=−xy to substitute
dx2d2y=−x2x(−xy)−y
Solution
More Steps

Calculate
−x2x(−xy)−y
Multiply the terms
More Steps

Evaluate
x(−xy)
Multiplying or dividing an odd number of negative terms equals a negative
−x×xy
Cancel out the common factor x
−1×y
Multiply the terms
−y
−x2−y−y
Subtract the terms
More Steps

Simplify
−y−y
Collect like terms by calculating the sum or difference of their coefficients
(−1−1)y
Subtract the numbers
−2y
−x2−2y
Divide the terms
−(−x22y)
Calculate
x22y
dx2d2y=x22y
Show Solution
