Question
Solve the equation
y=0y=23x+x9+12x3y=23x−x9+12x3
Evaluate
y3−3xy2=x3×3x2y
Multiply
More Steps

Evaluate
x3×3x2y
Multiply the terms with the same base by adding their exponents
x3+2×3y
Add the numbers
x5×3y
Use the commutative property to reorder the terms
3x5y
y3−3xy2=3x5y
Move the expression to the left side
y3−3xy2−3x5y=0
Factor the expression
y(y2−3xy−3x5)=0
Separate the equation into 2 possible cases
y=0y2−3xy−3x5=0
Solution
More Steps

Evaluate
y2−3xy−3x5=0
Substitute a=1,b=−3x and c=−3x5 into the quadratic formula y=2a−b±b2−4ac
y=23x±(−3x)2−4(−3x5)
Simplify the expression
More Steps

Evaluate
(−3x)2−4(−3x5)
Multiply the numbers
(−3x)2−(−12x5)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
(−3x)2+12x5
Evaluate the power
9x2+12x5
y=23x±9x2+12x5
Simplify the radical expression
More Steps

Evaluate
9x2+12x5
Factor the expression
3x2(3+4x3)
The root of a product is equal to the product of the roots of each factor
3×x2×3+4x3
Reduce the index of the radical and exponent with 2
3×x3+4x3
Multiply the terms
x9+12x3
y=23x±x9+12x3
Separate the equation into 2 possible cases
y=23x+x9+12x3y=23x−x9+12x3
y=0y=23x+x9+12x3y=23x−x9+12x3
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y3−3xy2=x3×3x2y
Multiply
More Steps

Evaluate
x3×3x2y
Multiply the terms with the same base by adding their exponents
x3+2×3y
Add the numbers
x5×3y
Use the commutative property to reorder the terms
3x5y
y3−3xy2=3x5y
To test if the graph of y3−3xy2=3x5y is symmetry with respect to the origin,substitute -x for x and -y for y
(−y)3−3(−x)(−y)2=3(−x)5(−y)
Evaluate
More Steps

Evaluate
(−y)3−3(−x)(−y)2
Multiply
More Steps

Multiply the terms
3(−x)(−y)2
Any expression multiplied by 1 remains the same
−3x(−y)2
Multiply the terms
−3xy2
(−y)3−(−3xy2)
Rewrite the expression
(−y)3+3xy2
Rewrite the expression
−y3+3xy2
−y3+3xy2=3(−x)5(−y)
Evaluate
More Steps

Evaluate
3(−x)5(−y)
Any expression multiplied by 1 remains the same
−3(−x)5y
Multiply the terms
More Steps

Evaluate
3(−x)5
Rewrite the expression
3(−x5)
Multiply the numbers
−3x5
−(−3x5y)
Multiply the first two terms
3x5y
−y3+3xy2=3x5y
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=y2−2xy−x55yx4+y2
Calculate
y3−3xy2=x33x2y
Simplify the expression
y3−3xy2=3x5y
Take the derivative of both sides
dxd(y3−3xy2)=dxd(3x5y)
Calculate the derivative
More Steps

Evaluate
dxd(y3−3xy2)
Use differentiation rules
dxd(y3)+dxd(−3xy2)
Evaluate the derivative
More Steps

Evaluate
dxd(y3)
Use differentiation rules
dyd(y3)×dxdy
Use dxdxn=nxn−1 to find derivative
3y2dxdy
3y2dxdy+dxd(−3xy2)
Evaluate the derivative
More Steps

Evaluate
dxd(−3xy2)
Use differentiation rules
dxd(−3x)×y2−3x×dxd(y2)
Evaluate the derivative
−3y2−3x×dxd(y2)
Evaluate the derivative
−3y2−6xydxdy
3y2dxdy−3y2−6xydxdy
3y2dxdy−3y2−6xydxdy=dxd(3x5y)
Calculate the derivative
More Steps

Evaluate
dxd(3x5y)
Use differentiation rules
dxd(3x5)×y+3x5×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(3x5)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3×dxd(x5)
Use dxdxn=nxn−1 to find derivative
3×5x4
Multiply the terms
15x4
15x4y+3x5×dxd(y)
Evaluate the derivative
More Steps

Evaluate
dxd(y)
Use differentiation rules
dyd(y)×dxdy
Use dxdxn=nxn−1 to find derivative
dxdy
15x4y+3x5dxdy
3y2dxdy−3y2−6xydxdy=15x4y+3x5dxdy
Collect like terms by calculating the sum or difference of their coefficients
(3y2−6xy)dxdy−3y2=15x4y+3x5dxdy
Move the expression to the left side
(3y2−6xy)dxdy−3y2−3x5dxdy=15x4y
Move the expression to the right side
(3y2−6xy)dxdy−3x5dxdy=15x4y+3y2
Collect like terms by calculating the sum or difference of their coefficients
(3y2−6xy−3x5)dxdy=15x4y+3y2
Divide both sides
3y2−6xy−3x5(3y2−6xy−3x5)dxdy=3y2−6xy−3x515x4y+3y2
Divide the numbers
dxdy=3y2−6xy−3x515x4y+3y2
Solution
More Steps

Evaluate
3y2−6xy−3x515x4y+3y2
Rewrite the expression
3y2−6xy−3x53(5yx4+y2)
Rewrite the expression
3(y2−2xy−x5)3(5yx4+y2)
Reduce the fraction
y2−2xy−x55yx4+y2
dxdy=y2−2xy−x55yx4+y2
Show Solution
