Question
Function
Find the vertex
Find the axis of symmetry
Rewrite in vertex form
Load more
(−31,32)
Evaluate
y=3x2+2x+1
Find the x-coordinate of the vertex by substituting a=3 and b=2 into x = −2ab
x=−2×32
Solve the equation for x
x=−31
Find the y-coordinate of the vertex by evaluating the function for x=−31
y=3(−31)2+2(−31)+1
Calculate
More Steps
Evaluate
3(−31)2+2(−31)+1
Multiply the terms
More Steps
Evaluate
3(−31)2
Evaluate the power
3×91
Multiply the numbers
31
31+2(−31)+1
Multiply the numbers
More Steps
Evaluate
2(−31)
Multiplying or dividing an odd number of negative terms equals a negative
−2×31
Multiply the numbers
−32
31−32+1
Reduce fractions to a common denominator
31−32+33
Write all numerators above the common denominator
31−2+3
Calculate the sum or difference
32
y=32
Solution
(−31,32)
Show Solution
Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
y=3x2+2x+1
To test if the graph of y=3x2+2x+1 is symmetry with respect to the origin,substitute -x for x and -y for y
−y=3(−x)2+2(−x)+1
Simplify
More Steps
Evaluate
3(−x)2+2(−x)+1
Multiply the terms
3x2+2(−x)+1
Multiply the numbers
3x2−2x+1
−y=3x2−2x+1
Change the signs both sides
y=−3x2+2x−1
Solution
Not symmetry with respect to the origin
Show Solution
Identify the conic
Find the standard equation of the parabola
Find the vertex of the parabola
Find the focus of the parabola
Load more
(x+31)2=31(y−32)
Evaluate
y=3x2+2x+1
Swap the sides of the equation
3x2+2x+1=y
Move the constant to the right-hand side and change its sign
3x2+2x=y−1
Multiply both sides of the equation by 31
(3x2+2x)×31=(y−1)×31
Multiply the terms
More Steps
Evaluate
(3x2+2x)×31
Use the the distributive property to expand the expression
3x2×31+2x×31
Multiply the numbers
x2+2x×31
Multiply the numbers
x2+32x
x2+32x=(y−1)×31
Multiply the terms
More Steps
Evaluate
(y−1)×31
Apply the distributive property
y×31−31
Use the commutative property to reorder the terms
31y−31
x2+32x=31y−31
To complete the square, the same value needs to be added to both sides
x2+32x+91=31y−31+91
Use a2+2ab+b2=(a+b)2 to factor the expression
(x+31)2=31y−31+91
Add the numbers
More Steps
Evaluate
−31+91
Reduce fractions to a common denominator
−3×33+91
Calculate
−93+91
Write all numerators above the common denominator
9−3+1
Add the numbers
9−2
Calculate
−92
(x+31)2=31y−92
Solution
(x+31)2=31(y−32)
Show Solution
Solve the equation
x=3−1+−2+3yx=−31+−2+3y
Evaluate
y=3x2+2x+1
Swap the sides of the equation
3x2+2x+1=y
Move the expression to the left side
3x2+2x+1−y=0
Substitute a=3,b=2 and c=1−y into the quadratic formula x=2a−b±b2−4ac
x=2×3−2±22−4×3(1−y)
Simplify the expression
x=6−2±22−4×3(1−y)
Simplify the expression
More Steps
Evaluate
22−4×3(1−y)
Multiply the terms
More Steps
Multiply the terms
4×3(1−y)
Multiply the terms
12(1−y)
Apply the distributive property
12−12y
22−(12−12y)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
22−12+12y
Evaluate the power
4−12+12y
Subtract the numbers
−8+12y
x=6−2±−8+12y
Simplify the radical expression
More Steps
Evaluate
−8+12y
Factor the expression
4(−2+3y)
The root of a product is equal to the product of the roots of each factor
4×−2+3y
Evaluate the root
More Steps
Evaluate
4
Write the number in exponential form with the base of 2
22
Reduce the index of the radical and exponent with 2
2
2−2+3y
x=6−2±2−2+3y
Separate the equation into 2 possible cases
x=6−2+2−2+3yx=6−2−2−2+3y
Simplify the expression
More Steps
Evaluate
x=6−2+2−2+3y
Divide the terms
More Steps
Evaluate
6−2+2−2+3y
Rewrite the expression
62(−1+−2+3y)
Cancel out the common factor 2
3−1+−2+3y
x=3−1+−2+3y
x=3−1+−2+3yx=6−2−2−2+3y
Solution
More Steps
Evaluate
x=6−2−2−2+3y
Divide the terms
More Steps
Evaluate
6−2−2−2+3y
Rewrite the expression
62(−1−−2+3y)
Cancel out the common factor 2
3−1−−2+3y
Use b−a=−ba=−ba to rewrite the fraction
−31+−2+3y
x=−31+−2+3y
x=3−1+−2+3yx=−31+−2+3y
Show Solution
Rewrite the equation
r=6cos2(θ)sin(θ)−2cos(θ)−1−9cos2(θ)−2sin(2θ)r=6cos2(θ)sin(θ)−2cos(θ)+1−9cos2(θ)−2sin(2θ)
Evaluate
y=3x2+2x+1
Move the expression to the left side
y−3x2−2x=1
To convert the equation to polar coordinates,substitute x for rcos(θ) and y for rsin(θ)
sin(θ)×r−3(cos(θ)×r)2−2cos(θ)×r=1
Factor the expression
−3cos2(θ)×r2+(sin(θ)−2cos(θ))r=1
Subtract the terms
−3cos2(θ)×r2+(sin(θ)−2cos(θ))r−1=1−1
Evaluate
−3cos2(θ)×r2+(sin(θ)−2cos(θ))r−1=0
Solve using the quadratic formula
r=−6cos2(θ)−sin(θ)+2cos(θ)±(sin(θ)−2cos(θ))2−4(−3cos2(θ))(−1)
Simplify
r=−6cos2(θ)−sin(θ)+2cos(θ)±1−9cos2(θ)−2sin(2θ)
Separate the equation into 2 possible cases
r=−6cos2(θ)−sin(θ)+2cos(θ)+1−9cos2(θ)−2sin(2θ)r=−6cos2(θ)−sin(θ)+2cos(θ)−1−9cos2(θ)−2sin(2θ)
Evaluate
More Steps
Evaluate
−6cos2(θ)−sin(θ)+2cos(θ)+1−9cos2(θ)−2sin(2θ)
Rewrite the expression
−6cos2(θ)−sin(θ)+2cos(θ)+1−9cos2(θ)−2sin(2θ)
Rewrite the expression
6cos2(θ)sin(θ)−2cos(θ)−1−9cos2(θ)−2sin(2θ)
r=6cos2(θ)sin(θ)−2cos(θ)−1−9cos2(θ)−2sin(2θ)r=−6cos2(θ)−sin(θ)+2cos(θ)−1−9cos2(θ)−2sin(2θ)
Solution
More Steps
Evaluate
−6cos2(θ)−sin(θ)+2cos(θ)−1−9cos2(θ)−2sin(2θ)
Rewrite the expression
−6cos2(θ)−sin(θ)+2cos(θ)−1−9cos2(θ)−2sin(2θ)
Rewrite the expression
6cos2(θ)sin(θ)−2cos(θ)+1−9cos2(θ)−2sin(2θ)
r=6cos2(θ)sin(θ)−2cos(θ)−1−9cos2(θ)−2sin(2θ)r=6cos2(θ)sin(θ)−2cos(θ)+1−9cos2(θ)−2sin(2θ)
Show Solution
Graph