Question
Solve the differential equation
y=6x2+12x+62x3+3x2+C,C∈R
Evaluate
(x+1)dxdy+2y=x
Multiply both sides
((x+1)dxdy+2y)×x+11=x×x+11
Apply the distributive property
(x+1)dxdy×x+11+2y×x+11=x×x+11
Multiply the terms
dxdy+2y×x+11=x×x+11
Multiply the terms
dxdy+x+12y=x×x+11
Multiply the terms
dxdy+x+12y=x+1x
Rewrite the expression
dxdy+x+12×y=x+1x
Since the equation is written in standard form, determine the functions P(x) and Q(x)
P(x)=x+12Q(x)=x+1x
Insert the function P(x)=x+12 into the formula for the integrating factor u(x)
u(x)=e∫x+12dxQ(x)=x+1x
Evaluate the integral
More Steps
Evaluate
∫x+12dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫x+11dx
Use the property of integral ∫ax+b1dx=a1ln(ax+b)
2ln(x+1)
u(x)=e2ln(x+1)Q(x)=x+1x
Rewrite the expression
More Steps
Evaluate
e2ln(x+1)
Transform the expression
(eln(x+1))2
Transform the expression
(x+1)2
u(x)=(x+1)2Q(x)=x+1x
Insert the integrating factor u(x) and the function Q(x) into the general solution formula
y=(x+1)21×∫x+1x×(x+1)2dx
Calculate
More Steps
Evaluate
∫x+1x×(x+1)2dx
Multiply the terms
More Steps
Multiply the terms
x+1x×(x+1)2
Cancel out the common factor x+1
x(x+1)
Apply the distributive property
x×x+x×1
Multiply the terms
x2+x×1
Any expression multiplied by 1 remains the same
x2+x
∫x2+xdx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫x2dx+∫xdx
Evaluate the integral
More Steps
Evaluate
∫x2dx
Use the property of integral ∫xndx=n+1xn+1
2+1x2+1
Add the numbers
2+1x3
Add the numbers
3x3
3x3+∫xdx
Evaluate the integral
More Steps
Evaluate
∫xdx
Use the property of integral ∫xndx=n+1xn+1
1+1x1+1
Add the numbers
1+1x2
Add the numbers
2x2
3x3+2x2
Add the constant of integral C
3x3+2x2+C,C∈R
y=(x+1)21×(3x3+2x2+C),C∈R
Calculate
More Steps
Evaluate
(x+1)21×(3x3+2x2+C)
Rewrite the expression
More Steps
Evaluate
3x3+2x2+C
Reduce fractions to a common denominator
3×2x3×2+2×3x2×3+3×2C×3×2
Multiply the numbers
6x3×2+2×3x2×3+3×2C×3×2
Multiply the numbers
6x3×2+6x2×3+3×2C×3×2
Multiply the numbers
6x3×2+6x2×3+6C×3×2
Write all numerators above the common denominator
6x3×2+x2×3+C×3×2
Use the commutative property to reorder the terms
62x3+x2×3+C×3×2
Use the commutative property to reorder the terms
62x3+3x2+C×3×2
Multiply the terms
62x3+3x2+C
(x+1)21×62x3+3x2+C
Multiply the terms
(x+1)2×62x3+3x2+C
Use the commutative property to reorder the terms
6(x+1)22x3+3x2+C
y=6(x+1)22x3+3x2+C,C∈R
Solution
More Steps
Evaluate
y=6(x+1)22x3+3x2+C
Expand the expression
More Steps
Evaluate
6(x+1)2
Calculate
6(x2+2x+1)
Calculate
6x2+12x+6
y=6x2+12x+62x3+3x2+C
y=6x2+12x+62x3+3x2+C,C∈R
Show Solution