Question
Determine the convergence or divergence
Diverges
Evaluate
n=1∑+∞2n(2n)!
Find the limit
n→+∞lim2n(2n)!2n+1(2(n+1))!
Simplify
n→+∞lim(∣(n+1)(2n+1)∣)
Remove the absolute value bars
n→+∞lim((n+1)(2n+1))
Rewrite the expression
n→+∞lim(n+1)×n→+∞lim(2n+1)
Calculate
More Steps
Evaluate
n→+∞lim(n+1)
Rewrite the expression
n→+∞lim(n)+n→+∞lim(1)
Calculate
(+∞)+n→+∞lim(1)
Calculate
(+∞)+1
Calculate
+∞
(+∞)×n→+∞lim(2n+1)
Calculate
More Steps
Evaluate
n→+∞lim(2n+1)
Rewrite the expression
n→+∞lim(2n)+n→+∞lim(1)
Calculate
More Steps
Evaluate
n→+∞lim(2n)
Rewrite the expression
2×n→+∞lim(n)
Calculate
2(+∞)
Calculate
+∞
(+∞)+n→+∞lim(1)
Calculate
(+∞)+1
Calculate
+∞
(+∞)(+∞)
Simplify
+∞
Solution
Diverges
Show Solution