Question
Evaluate the integral
21x2ln(x)−4x2+C,C∈R
Evaluate
∫xln(x)dx
Prepare for integration by parts
u=ln(x)dv=xdx
Calculate the derivative
More Steps
Calculate the derivative
u=ln(x)
Evaluate the derivative
du=(ln(x))′dx
Evaluate the derivative
du=x1dx
du=x1dxdv=xdx
Evaluate the integral
More Steps
Evaluate the integral
dv=xdx
Evaluate the integral
∫1dv=∫xdx
Evaluate the integral
v=2x2
du=x1dxv=2x2
Substitute u=ln(x)、v=2x2、du=x1dx、dv=xdx for ∫udv=uv−∫vdu
ln(x)×2x2−∫x1×2x2dx
Calculate
2x2ln(x)−∫2xdx
Evaluate the integral
More Steps
Evaluate the integral
−∫2xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−21×∫xdx
Use the property of integral ∫xndx=n+1xn+1
−21×1+1x1+1
Simplify
More Steps
Evaluate
1+1x1+1
Add the numbers
1+1x2
Add the numbers
2x2
−21×2x2
Multiply the terms
−2×2x2
Multiply the terms
−4x2
2x2ln(x)−4x2
Simplify the expression
21x2ln(x)−4x2
Solution
21x2ln(x)−4x2+C,C∈R
Show Solution