Question
Rewrite the parametric equations
9x2+4y2=1
Evaluate
{x=3sin(t)y=2cos(t)
Transform using a trigonometric identity
{x=3sin(t)y=21−sin2(t)
Choose the parametric equation
x=3sin(t)
Rewrite the expression
3x=sin(t)
Rewrite the expression
sin(t)=3x
Substitute the given value of sin(t)=3x into the equation y=21−sin2(t)
y=329−x2
Evaluate
y2=4−94x2
Move the expression to the left-hand side and change its sign
y2−(−94x2)=4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
y2+94x2=4
Use the commutative property to reorder the terms
94x2+y2=4
Multiply both sides of the equation by 41
(94x2+y2)×41=4×41
Multiply the terms
More Steps
Evaluate
(94x2+y2)×41
Use the the distributive property to expand the expression
94x2×41+y2×41
Multiply the numbers
More Steps
Evaluate
94×41
Reduce the numbers
91×1
Multiply the numbers
91
91x2+y2×41
Use the commutative property to reorder the terms
91x2+41y2
91x2+41y2=4×41
Multiply the terms
More Steps
Evaluate
4×41
Reduce the numbers
1×1
Simplify
1
91x2+41y2=1
Use a=a11 to transform the expression
9x2+41y2=1
Solution
9x2+4y2=1
Show Solution
Find the first derivative
dxdy=−3cos(t)2sin(t)
Evaluate
{x=3sin(t)y=2cos(t)
To find the derivative dxdy,first find dtdx and dtdy
dtd(x)=dtd(3sin(t))dtd(y)=dtd(2cos(t))
Find the derivative
More Steps
Evaluate
dtd(x)=dtd(3sin(t))
Calculate the derivative
More Steps
Evaluate
dtd(x)
Use differentiation rules
dxd(x)×dtdx
Use dxdxn=nxn−1 to find derivative
dtdx
dtdx=dtd(3sin(t))
Calculate the derivative
More Steps
Evaluate
dtd(3sin(t))
Simplify
3×dtd(sin(t))
Use dxd(sinx)=cosx to find derivative
3cos(t)
dtdx=3cos(t)
dtdx=3cos(t)dtd(y)=dtd(2cos(t))
Find the derivative
More Steps
Evaluate
dtd(y)=dtd(2cos(t))
Calculate the derivative
More Steps
Evaluate
dtd(y)
Use differentiation rules
dyd(y)×dtdy
Use dxdxn=nxn−1 to find derivative
dtdy
dtdy=dtd(2cos(t))
Calculate the derivative
More Steps
Evaluate
dtd(2cos(t))
Simplify
2×dtd(cos(t))
Use dxd(cosx)=−sinx to find derivative
2(−sin(t))
Calculate
−2sin(t)
dtdy=−2sin(t)
dtdx=3cos(t)dtdy=−2sin(t)
Find the required derivative by Substituting dtdx=3cos(t) and dtdy=−2sin(t) into dxdy=dtdxdtdy
dxdy=3cos(t)−2sin(t)
Solution
dxdy=−3cos(t)2sin(t)
Show Solution