Question
Simplify the expression
9×"4×c2−6×"4×cva−6×"4×vc2+4×"4×v2ca
Evaluate
"×(3c−2vc)×"×"×(3c−2va)×"
Rewrite the expression in exponential form
"4×(3c−2vc)(3c−2va)
Multiply the terms
More Steps

Evaluate
"4×(3c−2vc)
Apply the distributive property
"4×3c−"4×2vc
Use the commutative property to reorder the terms
3×"4×c−"4×2vc
Use the commutative property to reorder the terms
3×"4×c−2×"4×vc
(3×"4×c−2×"4×vc)(3c−2va)
Apply the distributive property
3×"4×c×3c−3×"4×c×2va−2×"4×vc×3c−(−2×"4×vc×2va)
Multiply the terms
More Steps

Evaluate
3×"4×c×3c
Multiply the numbers
9×"4×c×c
Multiply the terms
9×"4×c2
9×"4×c2−3×"4×c×2va−2×"4×vc×3c−(−2×"4×vc×2va)
Multiply the numbers
9×"4×c2−6×"4×cva−2×"4×vc×3c−(−2×"4×vc×2va)
Multiply the terms
More Steps

Evaluate
−2×"4×vc×3c
Multiply the numbers
−6×"4×vc×c
Multiply the terms
−6×"4×vc2
9×"4×c2−6×"4×cva−6×"4×vc2−(−2×"4×vc×2va)
Multiply the terms
More Steps

Evaluate
−2×"4×vc×2va
Multiply the numbers
−4×"4×vcva
Multiply the terms
−4×"4×v2ca
9×"4×c2−6×"4×cva−6×"4×vc2−(−4×"4×v2ca)
Solution
9×"4×c2−6×"4×cva−6×"4×vc2+4×"4×v2ca
Show Solution

Factor the expression
"4×c(3−2v)(3c−2va)
Evaluate
"×(3c−2vc)×"×"×(3c−2va)×"
Multiply the terms with the same base by adding their exponents
"1+1+1+1×(3c−2vc)(3c−2va)
Add the numbers
"4×(3c−2vc)(3c−2va)
Solution
More Steps

Evaluate
3c−2vc
Calculate
3c−2cv
Rewrite the expression
c×3−c×2v
Factor out c from the expression
c(3−2v)
"4×c(3−2v)(3c−2va)
Show Solution
