Question
Solve the equation
Solve for x
Solve for f
x=0x∈(−∞,1)∩x=2−f+1+f2+10f+1x∈(−∞,1)∩x=2−f+1−f2+10f+1x∈[1,+∞)∩x=2f+1+f2−10f+1x∈[1,+∞)∩x=2f+1−f2−10f+1
Evaluate
fx=x−3x2∣x−1∣
Multiply the terms
fx=x−3x2∣x−1∣
Cross multiply
fx(x−3)=x2∣x−1∣
Calculate
More Steps

Evaluate
fx(x−3)
Apply the distributive property
fx×x−fx×3
Multiply the terms
fx2−fx×3
Use the commutative property to reorder the terms
fx2−3fx
fx2−3fx=x2∣x−1∣
Move the expression to the left side
fx2−3fx−x2∣x−1∣=0
Separate the equation into 2 possible cases
fx2−3fx−x2(x−1)=0,x−1≥0fx2−3fx−x2(−(x−1))=0,x−1<0
Solve the equation
More Steps

Evaluate
fx2−3fx−x2(x−1)=0
Calculate
More Steps

Evaluate
−x2(x−1)
Apply the distributive property
−x2×x−(−x2×1)
Multiply the terms
−x3−(−x2×1)
Any expression multiplied by 1 remains the same
−x3−(−x2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−x3+x2
fx2−3fx−x3+x2=0
Collect like terms by calculating the sum or difference of their coefficients
(f+1)x2−3fx−x3=0
Factor the expression
x((f+1)x−3f−x2)=0
Separate the equation into 2 possible cases
x=0(f+1)x−3f−x2=0
Solve the equation
More Steps

Evaluate
(f+1)x−3f−x2=0
Rewrite in standard form
−x2+(f+1)x−3f=0
Multiply both sides
x2+(−f−1)x+3f=0
Substitute a=1,b=−f−1 and c=3f into the quadratic formula x=2a−b±b2−4ac
x=2f+1±(−f−1)2−4×3f
Simplify the expression
x=2f+1±f2−10f+1
Separate the equation into 2 possible cases
x=2f+1+f2−10f+1x=2f+1−f2−10f+1
x=0x=2f+1+f2−10f+1x=2f+1−f2−10f+1
x=0x=2f+1+f2−10f+1x=2f+1−f2−10f+1,x−1≥0fx2−3fx−x2(−(x−1))=0,x−1<0
Solve the inequality
More Steps

Evaluate
x−1≥0
Move the constant to the right side
x≥0+1
Removing 0 doesn't change the value,so remove it from the expression
x≥1
x=0x=2f+1+f2−10f+1x=2f+1−f2−10f+1,x≥1fx2−3fx−x2(−(x−1))=0,x−1<0
Solve the equation
More Steps

Evaluate
fx2−3fx−x2(−(x−1))=0
Calculate
fx2−3fx−x2(−x+1)=0
Calculate
More Steps

Evaluate
−x2(−x+1)
Apply the distributive property
−x2(−x)−x2×1
Multiply the terms
x3−x2×1
Any expression multiplied by 1 remains the same
x3−x2
fx2−3fx+x3−x2=0
Collect like terms by calculating the sum or difference of their coefficients
(f−1)x2−3fx+x3=0
Factor the expression
x((f−1)x−3f+x2)=0
Separate the equation into 2 possible cases
x=0(f−1)x−3f+x2=0
Solve the equation
More Steps

Evaluate
(f−1)x−3f+x2=0
Rewrite in standard form
x2+(f−1)x−3f=0
Substitute a=1,b=f−1 and c=−3f into the quadratic formula x=2a−b±b2−4ac
x=2−f+1±(f−1)2−4(−3f)
Simplify the expression
x=2−f+1±f2+10f+1
Separate the equation into 2 possible cases
x=2−f+1+f2+10f+1x=2−f+1−f2+10f+1
x=0x=2−f+1+f2+10f+1x=2−f+1−f2+10f+1
x=0x=2f+1+f2−10f+1x=2f+1−f2−10f+1,x≥1x=0x=2−f+1+f2+10f+1x=2−f+1−f2+10f+1,x−1<0
Solve the inequality
More Steps

Evaluate
x−1<0
Move the constant to the right side
x<0+1
Removing 0 doesn't change the value,so remove it from the expression
x<1
x=0x=2f+1+f2−10f+1x=2f+1−f2−10f+1,x≥1x=0x=2−f+1+f2+10f+1x=2−f+1−f2+10f+1,x<1
Find the intersection
x∈[1,+∞)∩x=2f+1+f2−10f+1∪x∈[1,+∞)∩x=2f+1−f2−10f+1x=0x=2−f+1+f2+10f+1x=2−f+1−f2+10f+1,x<1
Find the intersection
x∈[1,+∞)∩x=2f+1+f2−10f+1∪x∈[1,+∞)∩x=2f+1−f2−10f+1x=0x∈(−∞,1)∩x=2−f+1+f2+10f+1x∈(−∞,1)∩x=2−f+1−f2+10f+1
Solution
x=0x∈(−∞,1)∩x=2−f+1+f2+10f+1x∈(−∞,1)∩x=2−f+1−f2+10f+1x∈[1,+∞)∩x=2f+1+f2−10f+1x∈[1,+∞)∩x=2f+1−f2−10f+1
Show Solution
