Question
Simplify the expression
153607v5
Evaluate
(4(v2)×40v×96(v2)×7v6)
Remove the parentheses
4(v2)×40v×96(v2)×7v6
Dividing by an is the same as multiplying by a−n
4(v2)×40×96(v2)×7v6×v−1
Calculate
4(v2)×40×96v2×7v6×v−1
Calculate
4v2×40×96v2×7v6×v−1
Dividing by an is the same as multiplying by a−n
4×40×96v2×7v6×v−1×v−2
Multiply
More Steps

Multiply the terms
v2×7v6×v−1×v−2
Multiply the terms with the same base by adding their exponents
v2+6−1−2×7
Calculate the sum or difference
v5×7
Use the commutative property to reorder the terms
7v5
4×40×967v5
Solution
More Steps

Multiply the terms
4×40×96
Multiply the terms
160×96
Multiply the numbers
15360
153607v5
Show Solution

Find the excluded values
v=0
Evaluate
(4(v2)×40v×96(v2)×7v6)
To find the excluded values,set the denominators equal to 0
(v2)v=0
Simplify
More Steps

Evaluate
(v2)v
Calculate
v2×v
Use the product rule an×am=an+m to simplify the expression
v2+1
Add the numbers
v3
v3=0
Solution
v=0
Show Solution

Find the roots
v∈∅
Evaluate
(4(v2)×40v×96(v2)×7v6)
To find the roots of the expression,set the expression equal to 0
4(v2)×40v×96(v2)×7v6=0
Find the domain
More Steps

Evaluate
(v2)v=0
Simplify
More Steps

Evaluate
(v2)v
Calculate
v2×v
Use the product rule an×am=an+m to simplify the expression
v2+1
Add the numbers
v3
v3=0
The only way a power can not be 0 is when the base not equals 0
v=0
4(v2)×40v×96(v2)×7v6=0,v=0
Calculate
4(v2)×40v×96(v2)×7v6=0
Calculate
4(v2)×40v×96v2×7v6=0
Calculate
4v2×40v×96v2×7v6=0
Multiply
More Steps

Multiply the terms
v2×7v6
Multiply the terms with the same base by adding their exponents
v2+6×7
Add the numbers
v8×7
Use the commutative property to reorder the terms
7v8
4v2×40v×967v8=0
Multiply
More Steps

Multiply the terms
4v2×40v×96
Multiply the terms
More Steps

Evaluate
4×40×96
Multiply the terms
160×96
Multiply the numbers
15360
15360v2×v
Multiply the terms with the same base by adding their exponents
15360v2+1
Add the numbers
15360v3
15360v37v8=0
Divide the terms
More Steps

Evaluate
15360v37v8
Use the product rule aman=an−m to simplify the expression
153607v8−3
Reduce the fraction
153607v5
153607v5=0
Simplify
7v5=0
Rewrite the expression
v5=0
The only way a power can be 0 is when the base equals 0
v=0
Check if the solution is in the defined range
v=0,v=0
Solution
v∈∅
Show Solution
