Question
Simplify the expression
1443y6
Evaluate
(y4)3(3y3(2y2)2)23
Multiply the exponents
y4×3(3y3(2y2)2)23
Multiply the terms
More Steps

Evaluate
3y3(2y2)2
Rewrite the expression
3y3×4y4
Multiply the numbers
12y3×y4
Multiply the terms
More Steps

Evaluate
y3×y4
Use the product rule an×am=an+m to simplify the expression
y3+4
Add the numbers
y7
12y7
y4×3(12y7)23
Multiply the numbers
y12(12y7)23
Divide the terms
More Steps

Evaluate
y12(12y7)2
Factor the expression
y12144y14
Reduce the fraction
More Steps

Calculate
y12y14
Use the product rule aman=an−m to simplify the expression
y14−12
Subtract the terms
y2
144y2
(144y2)3
To raise a product to a power,raise each factor to that power
1443(y2)3
Solution
More Steps

Evaluate
(y2)3
Multiply the exponents
y2×3
Multiply the terms
y6
1443y6
Show Solution

Find the excluded values
y=0
Evaluate
(y4)3((3y3)(2y2)2)23
To find the excluded values,set the denominators equal to 0
(y4)3=0
Simplify
More Steps

Evaluate
(y4)3
Multiply the exponents
y4×3
Multiply the numbers
y12
y12=0
Solution
y=0
Show Solution

Find the roots
y∈∅
Evaluate
(y4)3((3y3)(2y2)2)23
To find the roots of the expression,set the expression equal to 0
(y4)3((3y3)(2y2)2)23=0
Find the domain
More Steps

Evaluate
(y4)3=0
Simplify
More Steps

Evaluate
(y4)3
Multiply the exponents
y4×3
Multiply the numbers
y12
y12=0
The only way a power can not be 0 is when the base not equals 0
y=0
(y4)3((3y3)(2y2)2)23=0,y=0
Calculate
(y4)3((3y3)(2y2)2)23=0
Multiply the terms
(y4)3(3y3(2y2)2)23=0
Multiply the terms
More Steps

Evaluate
3y3(2y2)2
Rewrite the expression
3y3×4y4
Multiply the numbers
12y3×y4
Multiply the terms
More Steps

Evaluate
y3×y4
Use the product rule an×am=an+m to simplify the expression
y3+4
Add the numbers
y7
12y7
(y4)3(12y7)23=0
Evaluate the power
More Steps

Evaluate
(y4)3
Transform the expression
y4×3
Multiply the numbers
y12
y12(12y7)23=0
Divide the terms
More Steps

Evaluate
y12(12y7)2
Factor the expression
y12144y14
Reduce the fraction
More Steps

Calculate
y12y14
Use the product rule aman=an−m to simplify the expression
y14−12
Subtract the terms
y2
144y2
(144y2)3=0
Calculate
1443y6=0
Rewrite the expression
y6=0
The only way a power can be 0 is when the base equals 0
y=0
Check if the solution is in the defined range
y=0,y=0
Solution
y∈∅
Show Solution
