Question
Simplify the expression
2x4y3−x2y−4−6x+3y4
Evaluate
((−x2y−4)−3(2x−1×y4))÷2x4y3
Remove the parentheses
(−x2y−4−3(2x−1×y4))÷2x4y3
Any expression multiplied by 1 remains the same
(−x2y−4−3(2x−y4))÷2x4y3
Expand the expression
More Steps

Simplify
−x2y−4−3(2x−y4)
Expand the expression
More Steps

Evaluate
−3(2x−y4)
Apply the distributive property
−3×2x−(−3y4)
Multiply the numbers
−6x−(−3y4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−6x+3y4
−x2y−4−6x+3y4
(−x2y−4−6x+3y4)÷2x4y3
Solution
2x4y3−x2y−4−6x+3y4
Show Solution

Find the excluded values
x=0,y=0
Evaluate
((−x2y−4)−3(2x−1×y4))÷(2x4y3)
To find the excluded values,set the denominators equal to 0
2x4y3=0
Evaluate
x4y3=0
Separate the equation into 2 possible cases
x4=0y3=0
The only way a power can be 0 is when the base equals 0
x=0y3=0
The only way a power can be 0 is when the base equals 0
x=0y=0
Solution
x=0,y=0
Show Solution
