Question
Simplify the expression
81x4−54x3
Evaluate
(3x−2)×27x3
Multiply the first two terms
27(3x−2)x3
Multiply the terms
More Steps

Evaluate
27(3x−2)
Apply the distributive property
27×3x−27×2
Multiply the numbers
81x−27×2
Multiply the numbers
81x−54
(81x−54)x3
Apply the distributive property
81x×x3−54x3
Solution
More Steps

Evaluate
x×x3
Use the product rule an×am=an+m to simplify the expression
x1+3
Add the numbers
x4
81x4−54x3
Show Solution

Find the roots
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Evaluate
(3x−2)×27x3
To find the roots of the expression,set the expression equal to 0
(3x−2)×27x3=0
Multiply the first two terms
27(3x−2)x3=0
Elimination the left coefficient
(3x−2)x3=0
Separate the equation into 2 possible cases
3x−2=0x3=0
Solve the equation
More Steps

Evaluate
3x−2=0
Move the constant to the right-hand side and change its sign
3x=0+2
Removing 0 doesn't change the value,so remove it from the expression
3x=2
Divide both sides
33x=32
Divide the numbers
x=32
x=32x3=0
The only way a power can be 0 is when the base equals 0
x=32x=0
Solution
x1=0,x2=32
Alternative Form
x1=0,x2=0.6˙
Show Solution
