Question
Simplify the expression
−20k2−30k
Evaluate
(5(−2k−3)×2k)
Remove the parentheses
5(−2k−3)×2k
Multiply the terms
10(−2k−3)k
Multiply the terms
10k(−2k−3)
Apply the distributive property
10k(−2k)−10k×3
Multiply the terms
More Steps

Evaluate
10k(−2k)
Multiply the numbers
More Steps

Evaluate
10(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−10×2
Multiply the numbers
−20
−20k×k
Multiply the terms
−20k2
−20k2−10k×3
Solution
−20k2−30k
Show Solution

Find the roots
k1=−23,k2=0
Alternative Form
k1=−1.5,k2=0
Evaluate
(5(−2k−3)×2k)
To find the roots of the expression,set the expression equal to 0
5(−2k−3)×2k=0
Multiply
More Steps

Multiply the terms
5(−2k−3)×2k
Multiply the terms
10(−2k−3)k
Multiply the terms
10k(−2k−3)
10k(−2k−3)=0
Elimination the left coefficient
k(−2k−3)=0
Separate the equation into 2 possible cases
k=0−2k−3=0
Solve the equation
More Steps

Evaluate
−2k−3=0
Move the constant to the right-hand side and change its sign
−2k=0+3
Removing 0 doesn't change the value,so remove it from the expression
−2k=3
Change the signs on both sides of the equation
2k=−3
Divide both sides
22k=2−3
Divide the numbers
k=2−3
Use b−a=−ba=−ba to rewrite the fraction
k=−23
k=0k=−23
Solution
k1=−23,k2=0
Alternative Form
k1=−1.5,k2=0
Show Solution
