Question
Simplify the expression
1−4x21
Evaluate
2x−8x3x×2
Use the commutative property to reorder the terms
2x−8x32x
Rewrite the fraction
2x(1−4x2)2x
Reduce the fraction
x(1−4x2)x
Solution
1−4x21
Show Solution

Find the excluded values
x=0,x=21,x=−21
Evaluate
(2x−8x3x×2)
To find the excluded values,set the denominators equal to 0
2x−8x3=0
Factor the expression
2x(1−4x2)=0
Divide both sides
x(1−4x2)=0
Separate the equation into 2 possible cases
x=01−4x2=0
Solve the equation
More Steps

Evaluate
1−4x2=0
Move the constant to the right-hand side and change its sign
−4x2=0−1
Removing 0 doesn't change the value,so remove it from the expression
−4x2=−1
Change the signs on both sides of the equation
4x2=1
Divide both sides
44x2=41
Divide the numbers
x2=41
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±41
Simplify the expression
More Steps

Evaluate
41
To take a root of a fraction,take the root of the numerator and denominator separately
41
Simplify the radical expression
41
Simplify the radical expression
21
x=±21
Separate the equation into 2 possible cases
x=21x=−21
x=0x=21x=−21
Solution
x=0,x=21,x=−21
Show Solution

Rewrite the fraction
2(1−2x)1+2(1+2x)1
Evaluate
2x−8x3x×2
Evaluate
2x−8x32x
Factor the expression
More Steps

Evaluate
2x−8x3
Rewrite the expression
2x−2x×4x2
Factor out 2x from the expression
2x(1−4x2)
Use a2−b2=(a−b)(a+b) to factor the expression
2x(1−2x)(1+2x)
2x(1−2x)(1+2x)2x
For each factor in the denominator,write a new fraction
2?+x?+1−2x?+1+2x?
Write the terms in the numerator
2A+xB+1−2xC+1+2xD
Set the sum of fractions equal to the original fraction
2x(1−2x)(1+2x)2x=2A+xB+1−2xC+1+2xD
Multiply both sides
2x(1−2x)(1+2x)2x×2x(1−2x)(1+2x)=2A×2x(1−2x)(1+2x)+xB×2x(1−2x)(1+2x)+1−2xC×2x(1−2x)(1+2x)+1+2xD×2x(1−2x)(1+2x)
Simplify the expression
2x=(x−4x3)A+(2−8x2)B+(2x+4x2)C+(2x−4x2)D
Simplify the expression
More Steps

Evaluate
(x−4x3)A+(2−8x2)B+(2x+4x2)C+(2x−4x2)D
Multiply the terms
A(x−4x3)+(2−8x2)B+(2x+4x2)C+(2x−4x2)D
Multiply the terms
A(x−4x3)+B(2−8x2)+(2x+4x2)C+(2x−4x2)D
Multiply the terms
A(x−4x3)+B(2−8x2)+C(2x+4x2)+(2x−4x2)D
Multiply the terms
A(x−4x3)+B(2−8x2)+C(2x+4x2)+D(2x−4x2)
Expand the expression
Ax−4Ax3+B(2−8x2)+C(2x+4x2)+D(2x−4x2)
Expand the expression
Ax−4Ax3+2B−8Bx2+C(2x+4x2)+D(2x−4x2)
Expand the expression
Ax−4Ax3+2B−8Bx2+2Cx+4Cx2+D(2x−4x2)
Expand the expression
Ax−4Ax3+2B−8Bx2+2Cx+4Cx2+2Dx−4Dx2
2x=Ax−4Ax3+2B−8Bx2+2Cx+4Cx2+2Dx−4Dx2
Group the terms
2x=−4Ax3+(−8B+4C−4D)x2+(A+2C+2D)x+2B
Equate the coefficients
⎩⎨⎧0=−4A0=−8B+4C−4D2=A+2C+2D0=2B
Swap the sides
⎩⎨⎧−4A=0−8B+4C−4D=0A+2C+2D=22B=0
Solve the equation for A
More Steps

Evaluate
−4A=0
Change the signs on both sides of the equation
4A=0
Rewrite the expression
A=0
⎩⎨⎧A=0−8B+4C−4D=0A+2C+2D=22B=0
Substitute the given value of A into the equation ⎩⎨⎧−8B+4C−4D=0A+2C+2D=22B=0
⎩⎨⎧−8B+4C−4D=00+2C+2D=22B=0
Removing 0 doesn't change the value,so remove it from the expression
⎩⎨⎧−8B+4C−4D=02C+2D=22B=0
Solve the equation for B
⎩⎨⎧−8B+4C−4D=02C+2D=2B=0
Substitute the given value of B into the equation {−8B+4C−4D=02C+2D=2
{−8×0+4C−4D=02C+2D=2
Simplify
{4C−4D=02C+2D=2
Solve the equation for C
More Steps

Evaluate
4C−4D=0
Move the expression to the right-hand side and change its sign
4C=0+4D
Removing 0 doesn't change the value,so remove it from the expression
4C=4D
Divide both sides
44C=44D
Divide the numbers
C=44D
Divide the numbers
C=D
{C=D2C+2D=2
Substitute the given value of C into the equation 2C+2D=2
2D+2D=2
Simplify
More Steps

Evaluate
2D+2D
Collect like terms by calculating the sum or difference of their coefficients
(2+2)D
Add the numbers
4D
4D=2
Divide both sides
44D=42
Divide the numbers
D=42
Cancel out the common factor 2
D=21
Substitute the given value of D into the equation C=D
C=21
Calculate
⎩⎨⎧A=0B=0C=21D=21
Solution
2(1−2x)1+2(1+2x)1
Show Solution

Find the roots
x∈∅
Evaluate
(2x−8x3x×2)
To find the roots of the expression,set the expression equal to 0
2x−8x3x×2=0
Find the domain
More Steps

Evaluate
2x−8x3=0
Factor the expression
2x(1−4x2)=0
Divide both sides
x(1−4x2)=0
Apply the zero product property
{x=01−4x2=0
Solve the inequality
More Steps

Evaluate
1−4x2=0
Rewrite the expression
−4x2=−1
Change the signs on both sides of the equation
4x2=1
Divide both sides
44x2=41
Divide the numbers
x2=41
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±41
Simplify the expression
x=±21
Separate the inequality into 2 possible cases
{x=21x=−21
Find the intersection
x∈(−∞,−21)∪(−21,21)∪(21,+∞)
{x=0x∈(−∞,−21)∪(−21,21)∪(21,+∞)
Find the intersection
x∈(−∞,−21)∪(−21,0)∪(0,21)∪(21,+∞)
2x−8x3x×2=0,x∈(−∞,−21)∪(−21,0)∪(0,21)∪(21,+∞)
Calculate
2x−8x3x×2=0
Use the commutative property to reorder the terms
2x−8x32x=0
Divide the terms
More Steps

Evaluate
2x−8x32x
Rewrite the fraction
2x(1−4x2)2x
Reduce the fraction
x(1−4x2)x
Reduce the fraction
1−4x21
1−4x21=0
Cross multiply
1=(1−4x2)×0
Simplify the equation
1=0
Solution
x∈∅
Show Solution
