Question
Evaluate the integral
24π3+24
Alternative Form
≈2.291928
Evaluate
∫02π(x2+cos(x))dx
Evaluate the integral
∫(x2+cos(x))dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
∫x2dx+∫cos(x)dx
Evaluate the integral
More Steps

Evaluate
∫x2dx
Use the property of integral ∫xndx=n+1xn+1
2+1x2+1
Add the numbers
2+1x3
Add the numbers
3x3
3x3+∫cos(x)dx
Use the property of integral ∫cos(x)dx=sin(x)
3x3+sin(x)
Return the limits
(3x3+sin(x))02π
Solution
More Steps

Substitute the values into formula
3(2π)3+sin(2π)−(303+sin(0))
Calculate
3(2π)3+sin(2π)−(30+sin(0))
Divide the terms
3(2π)3+sin(2π)−(0+sin(0))
Calculate
3(2π)3+sin(2π)−(0+0)
Simplify
More Steps

Evaluate
3(2π)3
Simplify the expression
323π3
Rewrite the expression
24π3
24π3+sin(2π)−(0+0)
Calculate
24π3+1−(0+0)
Removing 0 doesn't change the value,so remove it from the expression
24π3+1−0
Removing 0 doesn't change the value,so remove it from the expression
24π3+1
Write all numerators above the least common denominator 24
24π3+1×241×24
Calculate
24π3+2424
Add the terms
24π3+24
24π3+24
Alternative Form
≈2.291928
Show Solution
