Question
Evaluate the integral
4π
Alternative Form
≈12.566371
Evaluate
∫02πx2cos(x)dx
Evaluate the integral
∫x2cos(x)dx
Prepare for integration by parts
u=x2dv=cos(x)dx
Calculate the derivative
More Steps

Calculate the derivative
u=x2
Evaluate the derivative
du=(x2)′dx
Evaluate the derivative
du=2xdx
du=2xdxdv=cos(x)dx
Evaluate the integral
More Steps

Evaluate the integral
dv=cos(x)dx
Evaluate the integral
∫1dv=∫cos(x)dx
Evaluate the integral
v=sin(x)
du=2xdxv=sin(x)
Substitute u=x2、v=sin(x)、du=2xdx、dv=cos(x)dx for ∫udv=uv−∫vdu
x2sin(x)−∫2xsin(x)dx
Evaluate the integral
More Steps

Evaluate the integral
−∫2xsin(x)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−2×∫xsin(x)dx
Prepare for integration by parts
u=xdv=sin(x)dx
Calculate the derivative
More Steps

Calculate the derivative
u=x
Evaluate the derivative
du=x′dx
Evaluate the derivative
du=1dx
Simplify the expression
du=dx
du=dxdv=sin(x)dx
Evaluate the integral
More Steps

Evaluate the integral
dv=sin(x)dx
Evaluate the integral
∫1dv=∫sin(x)dx
Evaluate the integral
v=−cos(x)
du=dxv=−cos(x)
Substitute u=x、v=−cos(x)、du=dx、dv=sin(x)dx for ∫udv=uv−∫vdu
−2(x(−cos(x))−∫1×(−cos(x))dx)
Calculate
−2(−xcos(x)−∫−cos(x)dx)
Calculate
2xcos(x)−(−2×∫−cos(x)dx)
Evaluate
2xcos(x)+2×∫−cos(x)dx
Evaluate the integral
More Steps

Evaluate the integral
2×∫−cos(x)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2(−1)×∫cos(x)dx
Simplify
−2×∫cos(x)dx
Use the property of integral ∫cos(x)dx=sin(x)
−2sin(x)
2xcos(x)−2sin(x)
x2sin(x)+2xcos(x)−2sin(x)
Return the limits
(x2sin(x)+2xcos(x)−2sin(x))02π
Solution
More Steps

Substitute the values into formula
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(02sin(0)+2×0×cos(0)−2sin(0))
Evaluate
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(02×sin(0)+2×0×cos(0)−2sin(0))
Any expression multiplied by 0 equals 0
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(02×sin(0)+0−2sin(0))
Calculate
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(0×sin(0)+0−2sin(0))
Calculate
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(0×0+0−2sin(0))
Calculate
(2π)2sin(2π)+2×2πcos(2π)−2sin(2π)−(0×0+0−2×0)
Calculate
More Steps

Evaluate
sin(2π)
Rearrange the numbers
sin(0+2π)
Rearrange the terms
sin(0)
Calculate the trigonometric value
0
(2π)2×0+2×2πcos(2π)−2sin(2π)−(0×0+0−2×0)
Calculate
More Steps

Evaluate
cos(2π)
Rearrange the numbers
cos(0+2π)
Rearrange the terms
cos(0)
Calculate the trigonometric value
1
(2π)2×0+2×2π×1−2sin(2π)−(0×0+0−2×0)
Calculate
More Steps

Evaluate
sin(2π)
Rearrange the numbers
sin(0+2π)
Rearrange the terms
sin(0)
Calculate the trigonometric value
0
(2π)2×0+2×2π×1−2×0−(0×0+0−2×0)
Any expression multiplied by 0 equals 0
(2π)2×0+2×2π×1−2×0−(0+0−2×0)
Any expression multiplied by 0 equals 0
(2π)2×0+2×2π×1−2×0−(0+0+0)
Any expression multiplied by 0 equals 0
0+2×2π×1−2×0−(0+0+0)
Multiply the terms
More Steps

Multiply the terms
2×2π×1
Rewrite the expression
2×2π
Multiply the terms
4π
0+4π−2×0−(0+0+0)
Any expression multiplied by 0 equals 0
0+4π+0−(0+0+0)
Removing 0 doesn't change the value,so remove it from the expression
0+4π+0−0
Removing 0 doesn't change the value,so remove it from the expression
4π
4π
Alternative Form
≈12.566371
Show Solution
