Question
Solve the equation
Solve for x
Solve for h
Solve for k
Load more

x=∣k∣r+h∣k∣x=∣k∣−r+h∣k∣
Evaluate
(x−h)2k2=r2
Use the commutative property to reorder the terms
k2(x−h)2=r2
Divide both sides
k2k2(x−h)2=k2r2
Divide the numbers
(x−h)2=k2r2
Take the root of both sides of the equation and remember to use both positive and negative roots
x−h=±k2r2
Simplify the expression
More Steps

Evaluate
k2r2
To take a root of a fraction,take the root of the numerator and denominator separately
k2r2
Simplify the radical expression
k2∣r∣
Simplify the radical expression
∣k∣∣r∣
x−h=±∣k∣∣r∣
Remove the absolute value bars
x−h=±∣k∣r
Separate the equation into 2 possible cases
x−h=∣k∣rx−h=−∣k∣r
Calculate
More Steps

Evaluate
x−h=∣k∣r
Move the expression to the right-hand side and change its sign
x=∣k∣r+h
Add the terms
More Steps

Evaluate
∣k∣r+h
Reduce fractions to a common denominator
∣k∣r+∣k∣h∣k∣
Write all numerators above the common denominator
∣k∣r+h∣k∣
x=∣k∣r+h∣k∣
x=∣k∣r+h∣k∣x−h=−∣k∣r
Solution
More Steps

Evaluate
x−h=−∣k∣r
Move the expression to the right-hand side and change its sign
x=−∣k∣r+h
Add the terms
More Steps

Evaluate
−∣k∣r+h
Reduce fractions to a common denominator
−∣k∣r+∣k∣h∣k∣
Write all numerators above the common denominator
∣k∣−r+h∣k∣
x=∣k∣−r+h∣k∣
x=∣k∣r+h∣k∣x=∣k∣−r+h∣k∣
Show Solution
