Question
Solve the differential equation
y=−10000000483807x6+747565600000x3+C,C∈R
Evaluate
y′=−250087x3×200016683x2−2517146x2×327
Simplify
More Steps

Evaluate
−250087x3×200016683x2−2517146x2×327
Multiply
More Steps

Multiply the terms
−250087x3×200016683x2
Multiply the terms
−50000001451421x3×x2
Multiply the terms with the same base by adding their exponents
−50000001451421x3+2
Add the numbers
−50000001451421x5
−50000001451421x5−2517146x2×327
Multiply the terms
−50000001451421x5−255606742x2
y′=−50000001451421x5−255606742x2
Rewrite the expression
dxdy=−50000001451421x5−255606742x2
Transform the expression
dy=(−50000001451421x5−255606742x2)dx
Integrate the left-hand side of the equation with respect to y and the right-hand side of the equation with respect to x
∫1dy=∫(−50000001451421x5−255606742x2)dx
Calculate
More Steps

Evaluate
∫1dy
Use the property of integral ∫kdx=kx
y
Add the constant of integral C1
y+C1,C1∈R
y+C1=∫(−50000001451421x5−255606742x2)dx,C1∈R
Calculate
More Steps

Evaluate
∫(−50000001451421x5−255606742x2)dx
Rewrite the expression
∫−50000003(483807x5+373782800000x2)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−50000003×∫(483807x5+373782800000x2)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
−50000003(∫483807x5dx+∫373782800000x2dx)
Calculate
−50000003×∫483807x5dx−50000003×∫373782800000x2dx
Evaluate the integral
More Steps

Evaluate
−50000003×∫483807x5dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−50000003×483807×∫x5dx
Multiply the numbers
−50000001451421×∫x5dx
Use the property of integral ∫xndx=n+1xn+1
−50000001451421×5+1x5+1
Simplify
−50000001451421×6x6
Cancel out the common factor 3
−5000000483807×2x6
Multiply the terms
−5000000×2483807x6
Multiply the terms
−10000000483807x6
−10000000483807x6−50000003×∫373782800000x2dx
Evaluate the integral
More Steps

Evaluate
−50000003×∫373782800000x2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−50000003×373782800000×∫x2dx
Multiply the numbers
−255606742×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
−255606742×2+1x2+1
Simplify
−255606742×3x3
Cancel out the common factor 3
−251868914x3
Multiply the terms
−251868914x3
−10000000483807x6−251868914x3
Reduce fractions to a common denominator
−10000000483807x6−25×4000001868914x3×400000
Multiply the numbers
−10000000483807x6−100000001868914x3×400000
Write all numerators above the common denominator
10000000−483807x6−1868914x3×400000
Multiply the terms
10000000−483807x6−747565600000x3
Use b−a=−ba=−ba to rewrite the fraction
−10000000483807x6+747565600000x3
Add the constant of integral C2
−10000000483807x6+747565600000x3+C2,C2∈R
y+C1=−10000000483807x6+747565600000x3+C2,C1∈R,C2∈R
Solution
y=−10000000483807x6+747565600000x3+C,C∈R
Show Solution
