Question
Simplify the expression
−354294x33x−10
Evaluate
9x2×18x×93x−10×9x2×18x×9−6x3
Reduce the fraction
More Steps

Evaluate
9x2×18x×9−6x3
Multiply
More Steps

Evaluate
9x2×18x×9
Multiply the terms
1458x2×x
Multiply the terms with the same base by adding their exponents
1458x2+1
Add the numbers
1458x3
1458x3−6x3
Use b−a=−ba=−ba to rewrite the fraction
−1458x36x3
Reduce the fraction
−243x3x3
Reduce the fraction
−2431
9x2×18x×93x−10×(−2431)
Use the rules for multiplication and division
−9x2×18x×93x−10×2431
Multiply
More Steps

Multiply the terms
9x2×18x×9
Multiply the terms
More Steps

Evaluate
9×18×9
Multiply the terms
162×9
Multiply the numbers
1458
1458x2×x
Multiply the terms with the same base by adding their exponents
1458x2+1
Add the numbers
1458x3
−1458x33x−10×2431
Multiply the terms
−1458x3×2433x−10
Solution
−354294x33x−10
Show Solution

Find the excluded values
x=0
Evaluate
9x2×18x×93x−10×9x2×18x×9−6x3
To find the excluded values,set the denominators equal to 0
x2×x=0
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x3=0
Solution
x=0
Show Solution

Find the roots
x=310
Alternative Form
x=3.3˙
Evaluate
9x2×18x×93x−10×9x2×18x×9−6x3
To find the roots of the expression,set the expression equal to 0
9x2×18x×93x−10×9x2×18x×9−6x3=0
Find the domain
More Steps

Evaluate
x2×x=0
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x3=0
The only way a power can not be 0 is when the base not equals 0
x=0
9x2×18x×93x−10×9x2×18x×9−6x3=0,x=0
Calculate
9x2×18x×93x−10×9x2×18x×9−6x3=0
Multiply
More Steps

Multiply the terms
9x2×18x×9
Multiply the terms
More Steps

Evaluate
9×18×9
Multiply the terms
162×9
Multiply the numbers
1458
1458x2×x
Multiply the terms with the same base by adding their exponents
1458x2+1
Add the numbers
1458x3
1458x33x−10×9x2×18x×9−6x3=0
Multiply
More Steps

Multiply the terms
9x2×18x×9
Multiply the terms
More Steps

Evaluate
9×18×9
Multiply the terms
162×9
Multiply the numbers
1458
1458x2×x
Multiply the terms with the same base by adding their exponents
1458x2+1
Add the numbers
1458x3
1458x33x−10×1458x3−6x3=0
Divide the terms
More Steps

Evaluate
1458x3−6x3
Reduce the fraction
1458−6
Cancel out the common factor 6
243−1
Use b−a=−ba=−ba to rewrite the fraction
−2431
1458x33x−10×(−2431)=0
Multiply the terms
More Steps

Evaluate
1458x33x−10×(−2431)
Multiplying or dividing an odd number of negative terms equals a negative
−1458x33x−10×2431
Multiply the terms
−1458x3×2433x−10
Multiply the terms
−354294x33x−10
−354294x33x−10=0
Rewrite the expression
354294x3−3x+10=0
Cross multiply
−3x+10=354294x3×0
Simplify the equation
−3x+10=0
Move the constant to the right side
−3x=0−10
Removing 0 doesn't change the value,so remove it from the expression
−3x=−10
Change the signs on both sides of the equation
3x=10
Divide both sides
33x=310
Divide the numbers
x=310
Check if the solution is in the defined range
x=310,x=0
Solution
x=310
Alternative Form
x=3.3˙
Show Solution
