Question
Simplify the expression
1224x3238d−5dx
Evaluate
d×2x2×18x7−d×x2×17x×725x
Reduce the fraction
More Steps

Evaluate
x2×17x×725x
Multiply
More Steps

Evaluate
x2×17x×72
Multiply the terms with the same base by adding their exponents
x2+1×17×72
Add the numbers
x3×17×72
Multiply the terms
x3×1224
x3×12245x
Reduce the fraction
More Steps

Calculate
x3x
Use the product rule aman=an−m to simplify the expression
x3−11
Subtract the terms
x21
x2×12245
Calculate
1224x25
d×2x2×18x7−d×1224x25
Multiply
More Steps

Multiply the terms
2x2×18x
Multiply the terms
36x2×x
Multiply the terms with the same base by adding their exponents
36x2+1
Add the numbers
36x3
d×36x37−d×1224x25
Multiply the terms
More Steps

Multiply the terms
d×36x37
Multiply the terms
36x3d×7
Use the commutative property to reorder the terms
36x37d
36x37d−d×1224x25
Multiply the terms
More Steps

Multiply the terms
d×1224x25
Multiply the terms
1224x2d×5
Use the commutative property to reorder the terms
1224x25d
36x37d−1224x25d
Reduce fractions to a common denominator
36x3×347d×34−1224x2×x5dx
Multiply the numbers
1224x37d×34−1224x2×x5dx
Multiply
More Steps

Evaluate
1224x2×x
Multiply the terms with the same base by adding their exponents
1224x2+1
Add the numbers
1224x3
1224x37d×34−1224x35dx
Write all numerators above the common denominator
1224x37d×34−5dx
Solution
1224x3238d−5dx
Show Solution

Find the excluded values
x=0
Evaluate
d×2x2×18x7−d×x2×17x×725x
To find the excluded values,set the denominators equal to 0
x2×x=0
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
x3=0
Solution
x=0
Show Solution
