Question
Simplify the expression
4sin(2a)−4sin2(2a)
Evaluate
1−cot(a)sin(a)×1−tan(a)cos(a)
Multiply the terms
(1−cot(a))(1−tan(a))sin(a)cos(a)
Transform the expression
More Steps

Evaluate
(1−cot(a))(1−tan(a))
Transform the expression
More Steps

Evaluate
1−cot(a)
Use cott=sintcost to transform the expression
1−sin(a)cos(a)
Reduce fractions to a common denominator
sin(a)sin(a)−sin(a)cos(a)
Write all numerators above the common denominator
sin(a)sin(a)−cos(a)
sin(a)sin(a)−cos(a)×(1−tan(a))
Transform the expression
More Steps

Evaluate
1−tan(a)
Use tant=costsint to transform the expression
1−cos(a)sin(a)
Reduce fractions to a common denominator
cos(a)cos(a)−cos(a)sin(a)
Write all numerators above the common denominator
cos(a)cos(a)−sin(a)
sin(a)sin(a)−cos(a)×cos(a)cos(a)−sin(a)
Multiply the terms
sin(a)cos(a)(sin(a)−cos(a))(cos(a)−sin(a))
sin(a)cos(a)(sin(a)−cos(a))(cos(a)−sin(a))sin(a)cos(a)
Multiply by the reciprocal
sin(a)cos(a)×(sin(a)−cos(a))(cos(a)−sin(a))sin(a)cos(a)
Multiply the terms
(sin(a)−cos(a))(cos(a)−sin(a))sin(a)cos(a)sin(a)cos(a)
Multiply the terms
More Steps

Evaluate
sin(a)cos(a)sin(a)cos(a)
Calculate
More Steps

Multiply the terms
sin(a)sin(a)
Calculate
sin1+1(a)
Calculate
sin2(a)
sin2(a)cos(a)cos(a)
Calculate
More Steps

Multiply the terms
cos(a)cos(a)
Calculate
cos1+1(a)
Calculate
cos2(a)
sin2(a)cos2(a)
(sin(a)−cos(a))(cos(a)−sin(a))sin2(a)cos2(a)
Transform the expression
2sin(a)cos(a)−sin2(a)−cos2(a)(sin(a)cos(a))2
Use 2sin(t)cos(t)=sin(2t) to transform the expression
sin(2a)−sin2(a)−cos2(a)(sin(a)cos(a))2
Transform the expression
More Steps

Evaluate
sin(2a)−sin2(a)−cos2(a)
Use sin2t=1−cos2t to transform the expression
sin(2a)−(1−cos2(a))−cos2(a)
Calculate
sin(2a)−1+cos2(a)−cos2(a)
The sum of two opposites equals 0
More Steps

Evaluate
cos2(a)−cos2(a)
Collect like terms
(1−1)cos2(a)
Add the coefficients
0×cos2(a)
Calculate
0
sin(2a)−1+0
Remove 0
sin(2a)−1
sin(2a)−1(sin(a)cos(a))2
Use sin(2t)=2sintcost to transform the expression
2cos(a)sin(a)−1(sin(a)cos(a))2
Transform the expression
2cos(a)sin(a)−1(2sin(2a))2
Transform the expression
sin(2a)−1(2sin(2a))2
Rewrite the expression
sin(2a)−14sin2(2a)
Multiply by the reciprocal
4sin2(2a)×sin(2a)−11
Multiply the terms
4(sin(2a)−1)sin2(2a)
Solution
More Steps

Evaluate
4(sin(2a)−1)
Use the the distributive property to expand the expression
4sin(2a)+4(−1)
Simplify
4sin(2a)−4
4sin(2a)−4sin2(2a)
Show Solution
