Question
Solve the equation
Solve for x
Solve for y
x=∣y−2∣8x=−∣y−2∣8
Evaluate
16(x×1)2×4(y−2)2=1
Simplify
More Steps

Evaluate
16(x×1)2×4(y−2)2
Any expression multiplied by 1 remains the same
16x2×4(y−2)2
Multiply the terms
16×4x2(y−2)2
Multiply the terms
64x2(y−2)2
64x2(y−2)2=1
Rewrite the expression
64(y−2)2x2=1
Cross multiply
(y−2)2x2=64
Divide both sides
(y−2)2(y−2)2x2=(y−2)264
Divide the numbers
x2=(y−2)264
Take the root of both sides of the equation and remember to use both positive and negative roots
x=±(y−2)264
Simplify the expression
More Steps

Evaluate
(y−2)264
To take a root of a fraction,take the root of the numerator and denominator separately
(y−2)264
Simplify the radical expression
More Steps

Evaluate
64
Write the number in exponential form with the base of 8
82
Reduce the index of the radical and exponent with 2
8
(y−2)28
Simplify the radical expression
∣y−2∣8
x=±∣y−2∣8
Solution
x=∣y−2∣8x=−∣y−2∣8
Show Solution

Testing for symmetry
Testing for symmetry about the origin
Testing for symmetry about the x-axis
Testing for symmetry about the y-axis
Not symmetry with respect to the origin
Evaluate
16(x×1)2×4(y−2)2=1
Simplify
More Steps

Evaluate
16(x×1)2×4(y−2)2
Any expression multiplied by 1 remains the same
16x2×4(y−2)2
Multiply the terms
16×4x2(y−2)2
Multiply the terms
64x2(y−2)2
64x2(y−2)2=1
To test if the graph of 64x2(y−2)2=1 is symmetry with respect to the origin,substitute -x for x and -y for y
64(−x)2(−y−2)2=1
Evaluate
More Steps

Evaluate
64(−x)2(−y−2)2
Multiply the terms
64(−x(−y−2))2
Evaluate the power
More Steps

Evaluate
(−x(−y−2))2
Evaluate the power
(−x)2(−y−2)2
Evaluate the power
x2(−y−2)2
Evaluate the power
x2(y2+4y+4)
Apply the distributive property
x2y2+x2×4y+x2×4
Use the commutative property to reorder the terms
x2y2+4x2y+x2×4
Use the commutative property to reorder the terms
x2y2+4x2y+4x2
64x2y2+4x2y+4x2
64x2y2+4x2y+4x2=1
Solution
Not symmetry with respect to the origin
Show Solution

Find the first derivative
Find the derivative with respect to x
Find the derivative with respect to y
dxdy=x−y+2
Calculate
16(x1)24(y−2)2=1
Simplify the expression
64x2(y−2)2=1
Take the derivative of both sides
dxd(64x2(y−2)2)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(64x2(y−2)2)
Rewrite the expression
64dxd(x2(y−2)2)
Evaluate the derivative
More Steps

Evaluate
dxd(x2(y−2)2)
Use differentiation rules
dxd(x2)×(y−2)2+x2×dxd((y−2)2)
Use dxdxn=nxn−1 to find derivative
2x(y−2)2+x2×dxd((y−2)2)
Evaluate the derivative
2x(y−2)2+x2dxdy×(2y−4)
642x(y−2)2+x2dxdy×(2y−4)
Calculate
32x(y−2)2+x2dxdy×(y−2)
32x(y−2)2+x2dxdy×(y−2)=dxd(1)
Calculate the derivative
32x(y−2)2+x2dxdy×(y−2)=0
Rewrite the expression
32(y−2)2x+(x2y−2x2)dxdy=0
Simplify
(y−2)2x+(x2y−2x2)dxdy=0
Move the constant to the right side
(x2y−2x2)dxdy=0−(y−2)2x
Removing 0 doesn't change the value,so remove it from the expression
(x2y−2x2)dxdy=−(y−2)2x
Divide both sides
x2y−2x2(x2y−2x2)dxdy=x2y−2x2−(y−2)2x
Divide the numbers
dxdy=x2y−2x2−(y−2)2x
Divide the numbers
More Steps

Evaluate
x2y−2x2−(y−2)2x
Rewrite the expression
x(xy−2x)−(y−2)2x
Reduce the fraction
xy−2x−(y−2)2
Use b−a=−ba=−ba to rewrite the fraction
−xy−2x(y−2)2
dxdy=−xy−2x(y−2)2
Expand the expression
More Steps

Evaluate
−(y−2)2
Calculate
−(y2−4y+4)
Use the commutative property to reorder the terms
−y2+4y−4
dxdy=xy−2x−y2+4y−4
Solution
More Steps

Evaluate
xy−2x−y2+4y−4
Factor the expression
xy−2x(y−2)(−y+2)
Factor the expression
x(y−2)(y−2)(−y+2)
Reduce the fraction
x−y+2
dxdy=x−y+2
Show Solution

Find the second derivative
Find the second derivative with respect to x
Find the second derivative with respect to y
dx2d2y=x22y−4
Calculate
16(x1)24(y−2)2=1
Simplify the expression
64x2(y−2)2=1
Take the derivative of both sides
dxd(64x2(y−2)2)=dxd(1)
Calculate the derivative
More Steps

Evaluate
dxd(64x2(y−2)2)
Rewrite the expression
64dxd(x2(y−2)2)
Evaluate the derivative
More Steps

Evaluate
dxd(x2(y−2)2)
Use differentiation rules
dxd(x2)×(y−2)2+x2×dxd((y−2)2)
Use dxdxn=nxn−1 to find derivative
2x(y−2)2+x2×dxd((y−2)2)
Evaluate the derivative
2x(y−2)2+x2dxdy×(2y−4)
642x(y−2)2+x2dxdy×(2y−4)
Calculate
32x(y−2)2+x2dxdy×(y−2)
32x(y−2)2+x2dxdy×(y−2)=dxd(1)
Calculate the derivative
32x(y−2)2+x2dxdy×(y−2)=0
Rewrite the expression
32(y−2)2x+(x2y−2x2)dxdy=0
Simplify
(y−2)2x+(x2y−2x2)dxdy=0
Move the constant to the right side
(x2y−2x2)dxdy=0−(y−2)2x
Removing 0 doesn't change the value,so remove it from the expression
(x2y−2x2)dxdy=−(y−2)2x
Divide both sides
x2y−2x2(x2y−2x2)dxdy=x2y−2x2−(y−2)2x
Divide the numbers
dxdy=x2y−2x2−(y−2)2x
Divide the numbers
More Steps

Evaluate
x2y−2x2−(y−2)2x
Rewrite the expression
x(xy−2x)−(y−2)2x
Reduce the fraction
xy−2x−(y−2)2
Use b−a=−ba=−ba to rewrite the fraction
−xy−2x(y−2)2
dxdy=−xy−2x(y−2)2
Expand the expression
More Steps

Evaluate
−(y−2)2
Calculate
−(y2−4y+4)
Use the commutative property to reorder the terms
−y2+4y−4
dxdy=xy−2x−y2+4y−4
Simplify
More Steps

Evaluate
xy−2x−y2+4y−4
Factor the expression
xy−2x(y−2)(−y+2)
Factor the expression
x(y−2)(y−2)(−y+2)
Reduce the fraction
x−y+2
dxdy=x−y+2
Take the derivative of both sides
dxd(dxdy)=dxd(x−y+2)
Calculate the derivative
dx2d2y=dxd(x−y+2)
Use differentiation rules
dx2d2y=x2dxd(−y+2)×x−(−y+2)×dxd(x)
Calculate the derivative
More Steps

Evaluate
dxd(−y+2)
Use differentiation rules
dxd(−y)+dxd(2)
Evaluate the derivative
−dxdy+dxd(2)
Use dxd(c)=0 to find derivative
−dxdy+0
Evaluate
−dxdy
dx2d2y=x2−dxdy×x−(−y+2)×dxd(x)
Use dxdxn=nxn−1 to find derivative
dx2d2y=x2−dxdy×x−(−y+2)×1
Use the commutative property to reorder the terms
dx2d2y=x2−xdxdy−(−y+2)×1
Any expression multiplied by 1 remains the same
dx2d2y=x2−xdxdy−(−y+2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
dx2d2y=x2−xdxdy+y−2
Use equation dxdy=x−y+2 to substitute
dx2d2y=x2−x×x−y+2+y−2
Solution
More Steps

Calculate
x2−x×x−y+2+y−2
Multiply the terms
More Steps

Multiply the terms
−x×x−y+2
Cancel out the common factor x
−1×(−y+2)
Multiply the terms
−(−y+2)
Calculate
y−2
x2y−2+y−2
Calculate the sum or difference
More Steps

Evaluate
y−2+y−2
Add the terms
2y−2−2
Subtract the numbers
2y−4
x22y−4
dx2d2y=x22y−4
Show Solution
