Question
Simplify the expression
−175−1714i
Evaluate
5i−35−i3
Evaluate the power
More Steps

Evaluate
i3
Calculate
i2×i
Calculate
−i
5i−35−(−i)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
5i−35+i
Multiply by the Conjugate
(5i−3)(−5i−3)(5+i)(−5i−3)
Calculate
More Steps

Evaluate
(5+i)(−5i−3)
Apply the distributive property
5(−5i)+5(−3)+i(−5i)+i(−3)
Multiply the numbers
−25i+5(−3)+i(−5i)+i(−3)
Multiply the numbers
More Steps

Evaluate
5(−3)
Multiplying or dividing an odd number of negative terms equals a negative
−5×3
Multiply the numbers
−15
−25i−15+i(−5i)+i(−3)
Multiply the numbers
More Steps

Evaluate
i(−5i)
Multiply
−5i2
Use i2=−1 to transform the expression
−5(−1)
Calculate
5
−25i−15+5+i(−3)
Multiply the numbers
−25i−15+5−3i
Calculate
−25i−10−3i
Add the numbers
(−25−3)i−10
Calculate
−28i−10
Reorder the terms
−10−28i
(5i−3)(−5i−3)−10−28i
Calculate
More Steps

Evaluate
(5i−3)(−5i−3)
Use (a+b)(a−b)=a2−b2 to simplify the product
(−3)2−(5i)2
Evaluate the power
More Steps

Evaluate
(−3)2
A negative base raised to an even power equals a positive
32
Evaluate the power
9
9−(5i)2
Evaluate the power
More Steps

Evaluate
(5i)2
Evaluate
52i2
Evaluate the power
25i2
Evaluate the power
−25
9−(−25)
Calculate
34
34−10−28i
Rewrite the expression
342(−5−14i)
Cancel out the common factor 2
17−5−14i
Use b−a=−ba=−ba to rewrite the fraction
−175+14i
Solution
−175−1714i
Show Solution
