Question
Simplify the expression
−1303+1301i
Evaluate
13ii×1−3ii
Reduce the numbers
13i×1−3i1
Reduce the fraction
131i×1−3i1
Divide the terms
More Steps

Evaluate
1−3i1
Multiply by the Conjugate
(1−3i)(1+3i)1+3i
Calculate
More Steps

Evaluate
(1−3i)(1+3i)
Use (a−b)(a+b)=a2−b2 to simplify the product
12−(3i)2
Evaluate the power
1−(3i)2
Evaluate the power
1−(−9)
Calculate
10
101+3i
Simplify
101+103i
131i(101+103i)
Apply the distributive property
131i×101+131i×103i
Multiply the numbers
1301i+131i×103i
Multiply the numbers
More Steps

Evaluate
131i×103i
Multiply
131×103i2
Multiply
1303i2
Use i2=−1 to transform the expression
1303(−1)
Calculate
−1303
1301i−1303
Solution
−1303+1301i
Show Solution
