Question
Evaluate the integral
54x2x+C,C∈R
Evaluate
∫x×(x)2×2dx
Multiply
More Steps

Multiply the terms
x×(x)2×2
Multiply the terms with the same base by adding their exponents
(x)1+2×2
Add the numbers
(x)3×2
Rewrite the expression
xx×2
Use the commutative property to reorder the terms
2xx
∫2xxdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫xxdx
Prepare for integration by parts
u=xdv=xdx
Calculate the derivative
More Steps

Calculate the derivative
u=x
Evaluate the derivative
du=x′dx
Evaluate the derivative
du=1dx
Simplify the expression
du=dx
du=dxdv=xdx
Evaluate the integral
More Steps

Evaluate the integral
dv=xdx
Evaluate the integral
∫1dv=∫xdx
Evaluate the integral
v=32x23
du=dxv=32x23
Substitute u=x、v=32x23、du=dx、dv=xdx for ∫udv=uv−∫vdu
2(x×32x23−∫1×32x23dx)
Calculate
2(32x25−∫32x23dx)
Calculate
34x25−2×∫32x23dx
Evaluate the integral
More Steps

Evaluate the integral
−2×∫32x23dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−2×32×∫x23dx
Multiply the numbers
More Steps

Evaluate
−2×32
Multiply the numbers
−32×2
Multiply the numbers
−34
−34×∫x23dx
Use the property of integral ∫xndx=n+1xn+1
−34×23+1x23+1
Simplify
More Steps

Evaluate
23+1x23+1
Add the numbers
23+1x25
Add the numbers
25x25
Multiply by the reciprocal
x25×52
Use the commutative property to reorder the terms
52x25
−34×52x25
Multiply the numbers
More Steps

Evaluate
−34×52
To multiply the fractions,multiply the numerators and denominators separately
−3×54×2
Multiply the numbers
−3×58
Multiply the numbers
−158
−158x25
34x25−158x25
Collect like terms by calculating the sum or difference of their coefficients
(34−158)x25
Subtract the numbers
More Steps

Evaluate
34−158
Write all numerators above the least common denominator 15
3×54×5−158
Calculate
1520−158
Subtract the terms
1520−8
Subtract the terms
1512
Cancel out the common factor 3
54
54x25
Use anm=nam to transform the expression
54x5
Simplify the radical expression
More Steps

Evaluate
x5
Rewrite the exponent as a sum
x4+1
Use am+n=am×an to expand the expression
x4×x
The root of a product is equal to the product of the roots of each factor
x4×x
Reduce the index of the radical and exponent with 2
x2x
54x2x
Solution
54x2x+C,C∈R
Show Solution
