Question
Evaluate the integral
2x−32x3+C,C∈R
Evaluate
∫(2−2∣xcos(π)×x∣)dx
Calculate
∫(2−2∣x(−1)x∣)dx
Multiply
More Steps

Multiply the terms
x(−1)x
Any expression multiplied by 1 remains the same
−x×x
Multiply the terms
−x2
∫(2−2−x2)dx
Calculate the absolute value
More Steps

Calculate
−x2
Rewrite the expression
x2
When the expression in absolute value bars is not negative, remove the bars
x2
∫(2−2x2)dx
Rewrite the expression
∫2(1−x2)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫(1−x2)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
2(∫1dx+∫−x2dx)
Calculate
2×∫1dx+2×∫−x2dx
Use the property of integral ∫kdx=kx
2x+2×∫−x2dx
Evaluate the integral
More Steps

Evaluate
2×∫−x2dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2(−1)×∫x2dx
Simplify
−2×∫x2dx
Use the property of integral ∫xndx=n+1xn+1
−2×2+1x2+1
Simplify
More Steps

Evaluate
2+1x2+1
Add the numbers
2+1x3
Add the numbers
3x3
−2×3x3
Multiply the terms
−32x3
2x−32x3
Solution
2x−32x3+C,C∈R
Show Solution
