Question
Evaluate the integral
2x4−8x+C,C∈R
Evaluate
∫(2x3−3x×x1−5)dx
Multiply the terms
More Steps

Multiply the terms
−3x×x1
Multiply the terms
More Steps

Multiply the terms
3x×x1
Cancel out the common factor x
3×1
Multiply the terms
3
−3
∫(2x3−3−5)dx
Subtract the numbers
∫(2x3−8)dx
Rewrite the expression
∫2(x3−4)dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
2×∫(x3−4)dx
Use the property of integral ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx
2(∫x3dx+∫−4dx)
Calculate
2×∫x3dx+2×∫−4dx
Evaluate the integral
More Steps

Evaluate
2×∫x3dx
Use the property of integral ∫xndx=n+1xn+1
2×3+1x3+1
Simplify
More Steps

Evaluate
3+1x3+1
Add the numbers
3+1x4
Add the numbers
4x4
2×4x4
Cancel out the common factor 2
1×2x4
Multiply the terms
2x4
2x4+2×∫−4dx
Evaluate the integral
More Steps

Evaluate
2×∫−4dx
Use the property of integral ∫kdx=kx
2(−4x)
Multiply the numbers
More Steps

Evaluate
2(−4)
Multiplying or dividing an odd number of negative terms equals a negative
−2×4
Multiply the numbers
−8
−8x
2x4−8x
Solution
2x4−8x+C,C∈R
Show Solution
