Question
Evaluate the integral
2sin(2)ωt2+C,C∈R
Evaluate
∫sin(2)×ωtdt
Use the property of integral ∫kf(x)dx=k∫f(x)dx
sin(2)×ω×∫tdt
Multiply the terms
More Steps

Evaluate
1×sin(2)×ω
Any expression multiplied by 1 remains the same
sin(2)×ω
Simplify
ωsin(2)
ωsin(2)×∫tdt
Use the property of integral ∫xndx=n+1xn+1
ωsin(2)×1+1t1+1
Simplify
More Steps

Evaluate
1+1t1+1
Add the numbers
1+1t2
Add the numbers
2t2
ωsin(2)×2t2
Multiply the terms
2ωsin(2)×t2
Simplify
2sin(2)ωt2
Solution
2sin(2)ωt2+C,C∈R
Show Solution
