Question
Evaluate the integral
32x4sin(x)cos(x)+C,C∈R
Evaluate
∫x2dx×(xsin(x)cos(x))×2
Remove the parentheses
∫x2dx×xsin(x)cos(x)×2
Evaluate the integral
More Steps

Evaluate
∫x2dx
Use the property of integral ∫xndx=n+1xn+1
2+1x2+1
Add the numbers
2+1x3
Add the numbers
3x3
3x3xsin(x)cos(x)×2
Multiply the terms
More Steps

Multiply the terms
3x3x
Multiply the terms
3x3×x
Multiply the terms
More Steps

Evaluate
x3×x
Use the product rule an×am=an+m to simplify the expression
x3+1
Add the numbers
x4
3x4
3x4sin(x)cos(x)×2
Multiply the terms
3x4sin(x)cos(x)×2
Multiply the terms
3x4sin(x)cos(x)×2
Use the commutative property to reorder the terms
32x4sin(x)cos(x)
Solution
32x4sin(x)cos(x)+C,C∈R
Show Solution
