Question
Evaluate the integral
ln(∣x∣)+C,C∈R,x≥0−ln(∣x∣)+C,C∈R,x<0
Evaluate
∫(1×x2)(1×1×x2)x2dx
Remove the parentheses
∫1×x2×1×1×x2x2dx
Any expression multiplied by 1 remains the same
∫1×x2×1×x2x2dx
Reduce the index of the radical and exponent with nan=a
∫1×x2×1×∣x∣x2dx
Reduce the fraction
More Steps

Evaluate
1×x2×1×∣x∣x2
Any expression multiplied by 1 remains the same
x2∣x∣x2
Reduce the fraction
∣x∣1
∫∣x∣1dx
Separate into possible cases
∫x1dx,x≥0∫−x1dx,x<0
Simplify the expression
∫x1dx,x≥0∫−x1dx,x<0
Calculate
ln(∣x∣),x≥0−ln(∣x∣),x<0
Solution
ln(∣x∣)+C,C∈R,x≥0−ln(∣x∣)+C,C∈R,x<0
Show Solution
