Question
Evaluate the integral
−2exx3−2ex3x2−3xe−x−3e−x+C,C∈R
Evaluate
∫2exx2×xdx
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
∫2exx3dx
Rewrite the expression
∫21×exx3dx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
21×∫exx3dx
Evaluate the integral
21×∫e−xx3dx
Prepare for integration by parts
u=x3dv=e−xdx
Calculate the derivative
More Steps

Calculate the derivative
u=x3
Evaluate the derivative
du=(x3)′dx
Evaluate the derivative
du=3x2dx
du=3x2dxdv=e−xdx
Evaluate the integral
More Steps

Evaluate the integral
dv=e−xdx
Evaluate the integral
∫1dv=∫e−xdx
Evaluate the integral
v=−e−x
du=3x2dxv=−e−x
Substitute u=x3、v=−e−x、du=3x2dx、dv=e−xdx for ∫udv=uv−∫vdu
21(x3(−e−x)−∫3x2(−e−x)dx)
Calculate
21(−x3e−x−∫−3x2e−xdx)
Calculate
−21x3e−x−21×∫−3x2e−xdx
Evaluate the integral
More Steps

Evaluate the integral
−21×∫−3x2e−xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−21(−3)×∫x2e−xdx
Multiply the numbers
More Steps

Evaluate
−21(−3)
Multiplying or dividing an even number of negative terms equals a positive
21×3
Multiply the numbers
23
23×∫x2e−xdx
Prepare for integration by parts
u=x2dv=e−xdx
Calculate the derivative
More Steps

Calculate the derivative
u=x2
Evaluate the derivative
du=(x2)′dx
Evaluate the derivative
du=2xdx
du=2xdxdv=e−xdx
Evaluate the integral
More Steps

Evaluate the integral
dv=e−xdx
Evaluate the integral
∫1dv=∫e−xdx
Evaluate the integral
v=−e−x
du=2xdxv=−e−x
Substitute u=x2、v=−e−x、du=2xdx、dv=e−xdx for ∫udv=uv−∫vdu
23(x2(−e−x)−∫2x(−e−x)dx)
Calculate
23(−x2e−x−∫−2xe−xdx)
Calculate
−23x2e−x−23×∫−2xe−xdx
Evaluate the integral
More Steps

Evaluate the integral
−23×∫−2xe−xdx
Use the property of integral ∫kf(x)dx=k∫f(x)dx
−23(−2)×∫xe−xdx
Multiply the numbers
3×∫xe−xdx
Prepare for integration by parts
u=xdv=e−xdx
Calculate the derivative
du=dxdv=e−xdx
Evaluate the integral
du=dxv=−e−x
Substitute u=x、v=−e−x、du=dx、dv=e−xdx for ∫udv=uv−∫vdu
3(x(−e−x)−∫1×(−e−x)dx)
Calculate
3(−xe−x−∫−e−xdx)
Calculate
−3xe−x−3×∫−e−xdx
Evaluate the integral
−3xe−x−3e−x
−23x2e−x−3xe−x−3e−x
−21x3e−x−23x2e−x−3xe−x−3e−x
Rewrite the expression
More Steps

Calculate
−21x3e−x
Multiply the terms
More Steps

Evaluate
21e−x
Express with a positive exponent using a−n=an1
21×ex1
Multiply the terms
2ex1
−2ex1×x3
Multiply the terms
−2exx3
−2exx3−23x2e−x−3xe−x−3e−x
Rewrite the expression
More Steps

Calculate
−23x2e−x
Multiply the terms
More Steps

Evaluate
23e−x
Express with a positive exponent using a−n=an1
23×ex1
Multiply the terms
2ex3
−2ex3×x2
Multiply the terms
−2ex3x2
−2exx3−2ex3x2−3xe−x−3e−x
Solution
−2exx3−2ex3x2−3xe−x−3e−x+C,C∈R
Show Solution
